Network Working Group
Request for Comments: 3446
Category: Informational
D. Kim
Verio
D. Meyer
H. Kilmer
D. Farinacci
Procket Networks
January 2003

Anycast Rendevous Point (RP) mechanism using

Protocol Independent Multicast (PIM)

and Multicast Source Discovery Protocol (MSDP)

Status of this Memo

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright © The Internet Society (2003). All Rights Reserved.

Abstract

This document describes a mechanism to allow for an arbitrary number of Rendevous Points (RPs) per group in a single shared-tree Protocol Independent Multicast-Sparse Mode (PIM-SM) domain.

1. Introduction

PIM-SM, as defined in RFC 2362, allows for only a single active RP per group, and as such the decision of optimal RP placement can become problematic for a multi-regional network deploying PIM-SM.

Anycast RP relaxes an important constraint in PIM-SM, namely, that there can be only one group to RP mapping can be active at any time. The single mapping property has several implications, including traffic concentration, lack of scalable register decapsulation (when using the shared tree), slow convergence when an active RP fails, possible sub-optimal forwarding of multicast packets, and distant RP dependencies. These properties of PIM-SM have been demonstrated in native continental or inter-continental scale multicast deployments. As a result, it is clear that ISP backbones require a mechanism that allows definition of multiple active RPs per group in a single PIM-SM domain. Further, any such mechanism should also address the issues addressed above.

The mechanism described here is intended to address the need for better fail-over (convergence time) and sharing of the register decapsulation load (again, when using the shared-tree) among RPs in a domain. It is primarily intended for applications within those networks using MBGP, Multicast Source Discovery Protocol [MSDP] and PIM-SM protocols, for native multicast deployment, although it is not limited to those protocols. In particular, Anycast RP is applicable in any PIM-SM network that also supports MSDP (MSDP is required so that the various RPs in the domain maintain a consistent view of the sources that are active). Note however, a domain deploying Anycast RP is not required to run MBGP. Finally, a general requirement of the Anycast RP scheme is that the anycast address MUST NOT be used as the RP address in the RP's SA messages.

The keywords MUST, MUST NOT, MAY, OPTIONAL, REQUIRED, RECOMMENDED, SHALL, SHALL NOT, SHOULD, SHOULD NOT are to be interpreted as defined in BCP 14, RFC 2119 [RFC2119].

2. Problem Definition

The anycast RP solution provides a solution for both fast fail-over and shared-tree load balancing among any number of active RPs in a domain.

2.1. Traffic Concentration and Distributing Decapsulation Load Among RPs

While PIM-SM allows for multiple RPs to be defined for a given group, only one group to RP mapping can be active at a given time. A traditional deployment mechanism for balancing register decapsulation load between multiple RPs covering the multicast group space is to split up the 224.0.0.0/4 space between multiple defined RPs. This is an acceptable solution as long as multicast traffic remains low, but has problems as multicast traffic increases, especially because the network operator defining group space split between RPs does not always have a priori knowledge of traffic distribution between groups. This can be overcome via periodic reconfigurations, but operational considerations cause this type of solution to scale poorly.

2.2. Sub-optimal Forwarding of Multicast Packets

When a single RP serves a given multicast group, all joins to that group will be sent to that RP regardless of the topological distance between the RP and the sources and receivers. Initial data will be sent towards the RP also until configured the shortest path tree switch threshold is reached, or the data will always be sent towards the RP if the network is configured to always use the RP rooted shared tree. This holds true even if all the sources and the receivers are in any given single region, and RP is topologically distant from the sources and the receivers. This is an artifact of the dynamic nature of multicast group members, and of the fact that operators may not always have a priori knowledge of the topological placement of the group members.

Taken together, these effects can mean that (for example) although all the sources and receivers of a given group are in Europe, they are joining towards the RP in the USA and the data will be traversing a relatively expensive pipe(s) twice, once to get to RP, and back down the RP rooted tree again, creating inefficient use of expensive resources.

2.3. Distant RP Dependencies

As outlined above, a single active RP per group may cause local sources and receivers to become dependent on a topologically distant RP. In addition, when multiple RPs are configured, there can be considerable convergence delay involved in switching to the backup RP. This delay may exist independent of the toplogical location of the primary and backup RPs.

3. Solution

Given the problem set outlined above, a good solution would allow an operator to configure multiple RPs per group, and distribute those RPs in a topologically significant manner to the sources and receivers.

3.1. Mechanisms

All the RPs serving a given group or set of groups are configured with an identical anycast address, using a numbered interface on the RPs (frequently a logical interface such as a loopback is used). RPs then advertise group to RP mappings using this interface address. This will cause group members (senders) to join (register) towards the topologically closest RP. RPs MSDP peer with each other using an address unique to each RP. Since the anycast address is not a unique address (by definition), a router MUST NOT choose the anycast unicast address as the router ID, as this can prevent peerings and/or adjacencies from being established.

In summary then, the following steps are required:

3.1.1. Create the set of group-to-anycast-RP-address mappings

The first step is to create the set of group-to-anycast-RP-address mappings to be used in the domain. Each RP participating in an anycast RP set must be configured with a consistent set of group to RP address mappings. This mapping will be used by the non-RP routers in the domain.

3.1.2. Configure each RP for the group range with the anycast RP address

The next step is to configure each RP for the group range with the anycast RP address. If a dynamic mechanism, such as auto-RP or the PIMv2 bootstrap mechanism, is being used to advertise group to RP mappings, the anycast IP address should be used for the RP address.

3.1.3. Configure MSDP peerings between each of the anycast RPs in the

set

Unlike the group to RP mapping advertisements, MSDP peerings must use an IP address that is unique to the endpoints; that is, the MSDP peering endpoints MUST use a unicast rather than anycast address. A general guideline is to follow the addressing of the BGP peerings, e.g., loopbacks for iBGP peering, physical interface addresses for eBGP peering. Note that the anycast address MUST NOT be used as the RP address in SA messages (as this would case the peer-RPF check to fail).

3.1.4. Configure the non-RP's with the group-to-anycast-RP-address

mappings

Finally, each non-RP router must learn the set of group to RP mappings. This could be done via static configuration, auto-RP, or by PIMv2 bootstrap mechanism.

3.1.5. Ensure that the anycast IP address is reachable by all routers in

the domain

This is typically accomplished by causing each RP to inject the /32 into the domain's IGP.

3.2. Interaction with MSDP Peer-RPF check

Each MSDP peer receives and forwards the message away from the RP address in a "peer-RPF flooding" fashion. The notion of peer-RPF flooding is with respect to forwarding SA messages [MSDP]. The BGP routing tables are examined to determine which peer is the next hop towards the originating RP of the SA message. Such a peer is called an "RPF peer". See [MSDP] for details of the Peer-RPF check.

3.3. State Implications

It should be noted that using MSDP in this way forces the creation of (S,G) state along the path from the receiver to the source. This state may not be present if a single RP was used and receivers were forced to stay on the shared tree.

4. Security considerations

Since the solution described here makes heavy use of anycast addressing, care must be taken to avoid spoofing. In particular unicast routing and PIM RPs must be protected.

4.1. Unicast Routing

   Both internal and external unicast routing can be weakly protected
   with keyed MD5 [RFC1828], as implemented in an internal protocol such
   as OSPF [RFC2328] or in BGP [RFC2385].  More generally,  IPSEC
   [RFC2401] could be used to provide protocol integrity for the unicast
   routing system.

4.1.1. Effects of Unicast Routing Instability

While not a security issue, it is worth noting that if unicast routing is unstable, then the actual RP that source or receiver is using will be subject to the same instability.

4.2. Multicast Protocol Integrity

The mechanisms described in [RFC2362] should be used to provide protocol message integrity protection and group-wise message origin authentication.

4.3. MSDP Peer Integrity

As is the the case for BGP, MSDP peers can be protected using keyed MD5 [RFC1828].

5. Acknowledgments

John Meylor, Bill Fenner, Dave Thaler and Tom Pusateri provided insightful comments on earlier versions for this idea.

This memo is a product of the MBONE Deployment Working Group (MBONED) in the Operations and Management Area of the Internet Engineering Task Force. Submit comments to <mboned@ns.uoregon.edu> or the authors.

6. References

   [MSDP]     D. Meyer and B. Fenner, Editors, "Multicast Source
   
              Discovery Protocol (MSDP)", Work in Progress.
   
   [RFC2401]  Kent, S. and R. Atkinson, "Security Architecture for the
              Internet Protocol", RFC 2401, August 1995.
   
   [RFC1828]  Metzger, P. and W. Simpson, "IP Authentication using Keyed
              MD5", RFC 1828, August 1995.
   
   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.
   
   [RFC2362]  Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering,
              S., Handley, M., Jacobson, V., Liu, C., Sharma, P. and L.
              Wei, "Protocol Independent Multicast-Sparse Mode (PIM-SM):
              Protocol Specification", RFC 2362, June 1998.
   
   [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
   
   [RFC2385]  Heffernan, A., "Protection of BGP Sessions via the TCP MD5
              Signature Option", RFC 2385, August 1998.
   
   [RFC2403]  Madson, C. and R. Glenn, "The Use of HMAC-MD5-96 within
              ESP and AH", RFC 2403, November 1998.

7. Author's Address

   Dorian Kim
   Verio, Inc.
   EMail: dorian@blackrose.org

Hank Kilmer
EMail: hank@rem.com

   Dino Farinacci
   Procket Networks
   EMail: dino@procket.com

David Meyer
EMail: dmm@maoz.com

8. Full Copyright Statement

Copyright © The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.