Nortel
V. Manral, Ed.
IP Infusion
August 2009
Management Information Base for OSPFv3
Abstract
-
This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in IPv6-based internets. In particular, it defines objects for managing the Open Shortest Path First (OSPF) Routing Protocol for IPv6, otherwise known as OSPF version 3 (OSPFv3).
Status of This Memo
-
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
-
Copyright © 2009 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.
Table of Contents
-
1. The Internet-Standard Management Framework ......................3 2. Overview ........................................................3 2.1. IPv6 Interfaces ............................................3 2.2. Addressing Semantics .......................................4 2.3. Authentication .............................................4 2.4. Type of Service ............................................4 2.5. Flooding Scope .............................................4 2.6. Virtual Links ..............................................4 2.7. Neighbors ..................................................5 2.8. OSPFv3 Counters ............................................5 2.9. Multiple OSPFv3 Instances ..................................5 2.10. Notifications .............................................5 2.11. Conventions ...............................................6 3. OSPFv3 Notification Overview ....................................6 3.1. Introduction ...............................................6 3.2. Ignoring Initial Activity ..................................6 3.3. Throttling Notifications ...................................6 3.4. One Notification per OSPFv3 Event ..........................7 3.5. Polling Event Counters .....................................7 4. Structure of the OSPFv3 MIB Module ..............................7 4.1. General Variables ..........................................8 4.2. Area Table .................................................8 4.3. Area-Scope, Link-Scope, and AS-Scope Link State Database ...8 4.4. Host Table .................................................8 4.5. Interface Table ............................................8 4.6. Virtual Interface Table ....................................8 4.7. Neighbor, Configured Neighbor, and Virtual Neighbor Tables .....................................................8 4.8. Area Aggregate Table .......................................8 4.9. Notifications ..............................................9 5. Definitions .....................................................9 6. Security Considerations ........................................92 7. IANA Considerations ............................................93 8. Acknowledgements ...............................................93 9. References .....................................................93 9.1. Normative References ......................................93 9.2. Informative References ....................................94
1. The Internet-Standard Management Framework
-
For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].
Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].
2. Overview
-
This memo defines a portion of the Management Information Base (MIB) for managing the Open Shortest Path First Routing Protocol for IPv6 [RFC5340], otherwise known as OSPF version 3 (OSPFv3). Though the fundamental mechanisms of OSPF version 2 (OSPFv2) [RFC2328] remain unchanged in OSPFv3, some changes were necessary due to differences in IP address size and in protocol semantics between IPv4 and IPv6. In many cases, where the protocol operations have not changed from OSPFv2, the specification for OSPFv3 does not restate the details but instead refers to the relevant sections in the OSPFv2 specification. This MIB module follows along the same lines and includes Reference clauses referring to the OSPFv2 specification when applicable.
2.1. IPv6 Interfaces
-
IPv6 interfaces attach to links [RFC2460]. A link is roughly defined as the layer below IPv6 (e.g., Ethernet, IPv4 Tunnel). One or more IPv6 prefixes can be associated with an IPv6 interface. IPv6 interfaces and the prefixes associated with those interfaces can be configured via the IP-MIB [RFC4293]. IPv6 interfaces are configured in the IPv6 Interface Table and IPv6 prefixes are configured in the Internet Address Prefix Table. An IPv6 interface is identified by a unique index value. IPv6 Address Prefix Table entries associated with an IPv6 interface reference the interface's index.
Whereas an Interface Identifier in OSPFv2 is a local IPv4 address or MIB-2 interface index, an OSPFv3 Interface Identifier is an IPv6 interface index. For example, the index value of an OSPFv3 Interface Table entry is the IPv6 interface index of the IPv6 interface over which OSPFv3 is configured to operate.
2.2. Addressing Semantics
-
Router ID, Area ID, and Link State ID remain at the OSPFv2 size of 32 bits. To ensure uniqueness, a router running both IPv4 and IPv6 concurrently can continue to use a local IPv4 host address, represented as an unsigned 32-bit value, as the OSPFv3 Router ID. Otherwise, the Router ID must be selected using another method (e.g., administratively assigned).
Router ID, Area ID, and Link State ID do not have addressing semantics in OSPFv3, so their syntax is changed to Unsigned32. The Router ID index component comes before the Link State ID index component in the OSPFv3 MIB module because the lack of addressing semantics in Link State IDs makes them less unique identifiers than the Router ID. It is more useful to do partial Object Identifier (OID) lookups extending to the Router ID rather than the Link State ID.
2.3. Authentication
-
In OSPFv3, authentication has been removed from the protocol itself. MIB objects related to authentication are not carried forward from the OSPFv2 MIB module.
2.4. Type of Service
-
OSPFv2 MIB module objects related to Type of Service (ToS) are not carried forward to the OSPFv3 MIB module.
2.5. Flooding Scope
-
Flooding scope for link state advertisements (LSAs) has been generalized and is now explicitly encoded in the LSA's LS type field. The action to take upon receipt of unknown LSA types is also encoded in the LS type field [RFC5340]. The OSPFv3 MIB module defines three Link State Database tables, one each for Area-scope LSAs, Link-scope LSAs, and Autonomous System (AS)-scope LSAs.
2.6. Virtual Links
-
Since addressing semantics have been removed from router-LSAs in OSPFv3, virtual links now need to be assigned an Interface ID for advertisement in Hello packets and in router-LSAs. A read-only object has been added to the Virtual Interface Table entry to view the assigned Interface ID.
2.7. Neighbors
-
The OSPFv3 Neighbor Table is a read-only table that contains information learned from Hellos received from neighbors, including configured neighbors. The OSPFv3 Configured Neighbor Table contains entries for manually configured neighbors for use on non-broadcast multi-access (NBMA) and Point-to-Multipoint interface types.
2.8. OSPFv3 Counters
-
This MIB module defines several counters, namely:
- ospfv3OriginateNewLsas and ospfv3RxNewLsas in the ospfv3GeneralGroup
- ospfv3AreaSpfRuns and ospfv3AreaNssaTranslatorEvents in the ospfv3AreaTable
- ospfv3IfEvents in the ospfv3IfTable
- ospfv3VirtIfEvents in the ospfv3VirtIfTable
- ospfv3NbrEvents in the ospfv3NbrTable
- ospfv3VirtNbrEvents in the ospfv3VirtNbrTable
As a best practice, a management entity, when reading these counters, should use the discontinuity object, ospfv3DiscontinuityTime, to determine if an event that would invalidate the management entity understanding of the counters has occurred. A restart of the OSPFv3 routing process is an example of a discontinuity event.
2.9. Multiple OSPFv3 Instances
-
SNMPv3 supports "contexts" that can be used to implement MIB views on multiple OSPFv3 instances on the same system. See [RFC3411] or its successors for details.
2.10. Notifications
-
Notifications define a set of notifications, objects, and mechanisms to enhance the ability to manage IP internetworks that use OSPFv3 as their Interior Gateway Protocol (IGP).
2.11. Conventions
-
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
3. OSPFv3 Notification Overview
3.1. Introduction
-
OSPFv3 is an event-driven routing protocol, where an event can be a change in an OSPFv3 interface's link-level status, the expiration of an OSPFv3 timer, or the reception of an OSPFv3 protocol packet. Many of the actions that OSPFv3 takes as a result of these events will result in a change of the routing topology.
As routing topologies become large and complex, it is often difficult to locate the source of a topology change or unpredicted routing path by polling a large number or routers. Because of the difficulty of polling a large number of devices, a more prudent approach is for devices to notify a network manager of potentially critical OSPF events using SNMP notifications.
The ospfv3NotificationEnable object provides a coarse level of control over the generation of OSPFv3 notifications. It can be used to completely enable or disable generation of OSPFv3 notifications. Fine-grain control of individual notifications can be accomplished by utilizing the objects defined in RFC 3413 [RFC3413], specifically those described in Section 6.
3.2. Ignoring Initial Activity
-
The majority of critical events occur when OSPFv3 is enabled on a router, at which time the Designated Router is elected and neighbor adjacencies are formed. During this initial period, a potential flood of notifications is unnecessary since the events are expected. To avoid unnecessary notifications, a router should not originate expected OSPFv3 interface-related notifications until two of that interface's dead timer intervals have elapsed. The expected OSPFv3 interface notifications are ospfv3IfStateChange, ospfv3VirtIfStateChange, ospfv3NbrStateChange, and ospfv3VirtNbrStateChange.
3.3. Throttling Notifications
-
The mechanism for throttling the notifications is similar to the mechanism explained in RFC 1224 [RFC1224]. The basic premise of the throttling mechanism is that of a sliding window, defined in seconds and with an upper bound on the number of notifications that may be generated within this window. Note that unlike RFC 1224, notifications are not sent to inform the network manager that the throttling mechanism has kicked in.
A single window should be used to throttle all OSPFv3 notifications types except for the ospfv3LsdbOverflow and the ospfv3LsdbApproachingOverflow notifications, which should not be throttled. For example, with a window time of 3, an upper bound of 3, and events to cause notifications 1, 2, 3, and 4 (4 notifications within a 3-second period), the 4th notification should not be generated.
Appropriate values are 7 notifications with a window time of 10 seconds.
3.4. One Notification per OSPFv3 Event
-
Several of the notifications defined in this MIB module are generated as the result of finding an unusual condition while parsing an OSPFv3 packet or processing a timer event. There may be more than one unusual condition detected while handling the event. For example, a Link State Update packet may contain several retransmitted link state advertisements (LSAs), or a retransmitted database description packet may contain several database description entries. To limit the number of notifications and variables, OSPFv3 should generate at most one notification per OSPFv3 event. Only the variables associated with the first unusual condition should be included with the notification. Similarly, if more than one type of unusual condition is encountered while parsing the packet, only the first event will generate a notification.
3.5. Polling Event Counters
-
Many of the tables in the OSPFv3 MIB module contain generalized event counters. By enabling the notifications defined in this document, a network manager can obtain more specific information about these events. A network manager may want to poll these event counters and enable OSPFv3 notifications when a particular counter starts increasing abnormally.
4. Structure of the OSPFv3 MIB Module
-
The MIB is composed of the following sections:
-
General Variables
Area Table
Area-Scope Link State DatabaseLink-Scope Link State Databases (non-virtual and virtual) AS-Scope Link State Database
Host Table
Interface Table
Virtual Interface Table
Neighbor Table
Configured Neighbor Table
Virtual Neighbor Table
Area Aggregate Table
Notifications
-
4.1. General Variables
-
The General Variables are global to the OSPFv3 Process.
4.2. Area Table
-
The Area Data Structure describes the OSPFv3 Areas that the router participates in.
4.3. Area-Scope, Link-Scope, and AS-Scope Link State Database
-
The link state databases are provided primarily to provide detailed information for network debugging. There are separate tables for Link-scope LSAs received over non-virtual and virtual interfaces.
4.4. Host Table
-
The Host Table is provided to view configured Host Route information.
4.5. Interface Table
-
The Interface Table describes the various IPv6 links on which OSPFv3 is configured.
4.6. Virtual Interface Table
-
The Virtual Interface Table describes virtual OSPFv3 links.
4.7. Neighbor, Configured Neighbor, and Virtual Neighbor Tables
-
The Neighbor Table, the Configured Neighbor Table, and the Virtual Neighbor Table describe the neighbors to the OSPFv3 Process.
4.8. Area Aggregate Table
-
The Area Aggregate Table describes prefixes, which summarize routing information for export outside of an Area.
4.9. Notifications
-
Notifications are defined for OSPFv3 events. Several objects are defined specifically as variables to be used with notifications.
5. Definitions
-
OSPFV3-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, mib-2, Counter32, Gauge32, Integer32, Unsigned32 FROM SNMPv2-SMI TEXTUAL-CONVENTION, TruthValue, RowStatus, TimeStamp FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF InterfaceIndex FROM IF-MIB InetAddressType, InetAddress, InetAddressPrefixLength, InetAddressIPv6 FROM INET-ADDRESS-MIB Metric, BigMetric, Status, HelloRange, DesignatedRouterPriority FROM OSPF-MIB;
ospfv3MIB MODULE-IDENTITY
LAST-UPDATED "200908130000Z" ORGANIZATION "IETF OSPF Working Group" CONTACT-INFO "WG E-Mail: ospf@ietf.org WG Chairs: Acee Lindem acee@redback.com
-
-
-
-
-
-
Abhay Roy
akr@cisco.com
-
-
-
-
-
Editors: Dan Joyal Nortel 600 Technology Park Drive Billerica, MA 01821, USA djoyal@nortel.com
-
-
-
-
-
-
Vishwas Manral
IP Infusion
Almora, Uttarakhand
India
vishwas@ipinfusion.com"
-
-
DESCRIPTION
-
-
-
"The MIB module for OSPF version 3.
-
-
-
-
-
Copyright © 2009 IETF Trust and the persons identified as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of Internet Society, IETF or IETF Trust, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission.
-
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This version of this MIB module is part of RFC 5643; see the RFC itself for full legal notices."
-
-
-
REVISION "200908130000Z" DESCRIPTION "Initial version, published as RFC 5643" ::= { mib-2 191 } -- Textual conventions
Ospfv3UpToRefreshIntervalTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d" STATUS current DESCRIPTION "The values one might be able to configure for variables bounded by the Refresh Interval." REFERENCE "OSPF Version 2, Appendix B, Architectural Constants" SYNTAX Unsigned32 (1..1800)
Ospfv3DeadIntervalRangeTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d" STATUS current DESCRIPTION "The range, in seconds, of dead interval value." REFERENCE "OSPF for IPv6, Appendix C.3, Router Interface Parameters" SYNTAX Unsigned32 (1..'FFFF'h)
Ospfv3RouterIdTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d" STATUS current DESCRIPTION "A 32-bit, unsigned integer uniquely identifying the router in the Autonomous System. To ensure uniqueness, this may default to the value of one of the router's IPv4 host addresses if IPv4 is configured on the router." REFERENCE "OSPF for IPv6, Appendix C.1, Global Parameters" SYNTAX Unsigned32 (1..'FFFFFFFF'h)
Ospfv3LsIdTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d" STATUS current DESCRIPTION "A unique 32-bit identifier of the piece of the routing domain that is being described by a link state advertisement. In contrast to OSPFv2, the Link State ID (LSID) has no addressing semantics." REFERENCE "OSPF Version 2, Section 12.1.4, Link State ID" SYNTAX Unsigned32 (1..'FFFFFFFF'h) Ospfv3AreaIdTC ::= TEXTUAL-CONVENTION DISPLAY-HINT "d" STATUS current DESCRIPTION "An OSPFv3 Area Identifier. A value of zero identifies the backbone area." REFERENCE "OSPF for IPv6, Appendix C.3 Router Interface Parameters" SYNTAX Unsigned32 (0..'FFFFFFFF'h)
Ospfv3IfInstIdTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d" STATUS current DESCRIPTION "An OSPFv3 Interface Instance ID." REFERENCE "OSPF for IPv6, Appendix C.3, Router Interface Parameters" SYNTAX Unsigned32 (0..255)
Ospfv3LsaSequenceTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d" STATUS current DESCRIPTION "The sequence number field is a signed 32-bit integer. It is used to detect old and duplicate link state advertisements. The space of sequence numbers is linearly ordered. The larger the sequence number, the more recent the advertisement." REFERENCE "OSPF Version 2, Section 12.1.6, LS sequence number" SYNTAX Integer32
Ospfv3LsaAgeTC ::= TEXTUAL-CONVENTION
DISPLAY-HINT "d" STATUS current DESCRIPTION "The age of the link state advertisement in seconds. The high-order bit of the LS age field is considered the DoNotAge bit for support of on-demand circuits." REFERENCE "OSPF Version 2, Section 12.1.1, LS age; Extending OSPF to Support Demand Circuits, Section 2.2, The LS age field" SYNTAX Unsigned32 (0..3600 | 32768..36368) -- Top-level structure of MIB ospfv3Notifications OBJECT IDENTIFIER ::= { ospfv3MIB 0 } ospfv3Objects OBJECT IDENTIFIER ::= { ospfv3MIB 1 } ospfv3Conformance OBJECT IDENTIFIER ::= { ospfv3MIB 2 }
-- OSPFv3 General Variables
-- These parameters apply globally to the Router's
-- OSPFv3 Process.ospfv3GeneralGroup OBJECT IDENTIFIER ::= { ospfv3Objects 1 }
ospfv3RouterId OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS read-write STATUS current DESCRIPTION "A 32-bit unsigned integer uniquely identifying the router in the Autonomous System. To ensure uniqueness, this may default to the 32-bit unsigned integer representation of one of the router's IPv4 interface addresses (if IPv4 is configured on the router). This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." REFERENCE "OSPF for IPv6, Appendix C.1, Global Parameters" ::= { ospfv3GeneralGroup 1 }
ospfv3AdminStatus OBJECT-TYPE
SYNTAX Status MAX-ACCESS read-write STATUS current DESCRIPTION "The administrative status of OSPFv3 in the router. The value 'enabled' denotes that the OSPFv3 Process is active on at least one interface; 'disabled' disables it on all interfaces. This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." ::= { ospfv3GeneralGroup 2 }
ospfv3VersionNumber OBJECT-TYPE
SYNTAX INTEGER { version3 (3) } MAX-ACCESS read-only STATUS current DESCRIPTION "The version number of OSPF for IPv6 is 3." ::= { ospfv3GeneralGroup 3 }
ospfv3AreaBdrRtrStatus OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "A flag to denote whether this router is an area border router. The value of this object is true (1) when the router is an area border router." REFERENCE "OSPF Version 2, Section 3, Splitting the AS into Areas" ::= { ospfv3GeneralGroup 4 }
ospfv3ASBdrRtrStatus OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-write STATUS current DESCRIPTION "A flag to note whether this router is configured as an Autonomous System border router. This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." REFERENCE "OSPF Version 2, Section 3.3, Classification of routers" ::= { ospfv3GeneralGroup 5 }
ospfv3AsScopeLsaCount OBJECT-TYPE
SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of AS-scope (e.g., AS-External) link state advertisements in the link state database." ::= { ospfv3GeneralGroup 6 }
ospfv3AsScopeLsaCksumSum OBJECT-TYPE
SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "The 32-bit unsigned sum of the LS checksums of the AS-scoped link state advertisements contained in the link state database. This sum can be used to determine if there has been a change in a router's link state database or to compare the link state database of two routers." ::= { ospfv3GeneralGroup 7 }
ospfv3OriginateNewLsas OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of new link state advertisements that have been originated. This number is incremented each time the router originates a new LSA. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of ospfv3DiscontinuityTime." ::= { ospfv3GeneralGroup 8 }
ospfv3RxNewLsas OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of link state advertisements received that are determined to be new instantiations. This number does not include newer instantiations of self-originated link state advertisements. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of ospfv3DiscontinuityTime." ::= { ospfv3GeneralGroup 9 }
ospfv3ExtLsaCount OBJECT-TYPE
SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of External (LS type 0x4005) in the link state database." ::= { ospfv3GeneralGroup 10 }
ospfv3ExtAreaLsdbLimit OBJECT-TYPE
SYNTAX Integer32 (-1..'7FFFFFFF'h) MAX-ACCESS read-write STATUS current DESCRIPTION "The maximum number of non-default AS-external-LSA entries that can be stored in the link state database. If the value is -1, then there is no limit.
-
-
-
When the number of non-default AS-external-LSAs in a router's link state database reaches ospfv3ExtAreaLsdbLimit, the router enters Overflow state. The router never holds more than ospfv3ExtAreaLsdbLimit non-default AS-external-LSAs in its database. ospfv3ExtAreaLsdbLimit MUST be set identically in all routers attached to the OSPFv3 backbone and/or any regular OSPFv3 area (i.e., OSPFv3 stub areas and not-so-stubby-areas (NSSAs) are excluded).
-
-
This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." ::= { ospfv3GeneralGroup 11 }
ospfv3ExitOverflowInterval OBJECT-TYPE
SYNTAX Unsigned32 UNITS "seconds" MAX-ACCESS read-write STATUS current DESCRIPTION "The number of seconds that, after entering Overflow state, a router will attempt to leave Overflow state. This allows the router to again originate non-default, AS-External-LSAs. When set to 0, the router will not leave Overflow state until restarted.
-
-
-
This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage."
-
-
::= { ospfv3GeneralGroup 12 }
ospfv3DemandExtensions OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-write STATUS current DESCRIPTION "The router's support for demand circuits. The value of this object is true (1) when demand circuits are supported. This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." REFERENCE "OSPF Version 2; Extending OSPF to Support Demand Circuits" ::= { ospfv3GeneralGroup 13 }
ospfv3ReferenceBandwidth OBJECT-TYPE
SYNTAX Unsigned32 UNITS "kilobits per second" MAX-ACCESS read-write STATUS current DESCRIPTION "Reference bandwidth in kilobits per second for calculating default interface metrics. The default value is 100,000 KBPS (100 MBPS). This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." REFERENCE "OSPF Version 2, Appendix C.3, Router interface parameters" DEFVAL { 100000 } ::= { ospfv3GeneralGroup 14 }
ospfv3RestartSupport OBJECT-TYPE
SYNTAX INTEGER { none(1), plannedOnly(2), plannedAndUnplanned(3) } MAX-ACCESS read-write STATUS current DESCRIPTION "The router's support for OSPF graceful restart. Options include no restart support, only planned
-
-
-
restarts, or both planned and unplanned restarts.
-
-
This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." REFERENCE "Graceful OSPF Restart, Appendix B.1, Global Parameters (Minimum subset)" ::= { ospfv3GeneralGroup 15 }
ospfv3RestartInterval OBJECT-TYPE
SYNTAX Ospfv3UpToRefreshIntervalTC UNITS "seconds" MAX-ACCESS read-write STATUS current DESCRIPTION "Configured OSPF graceful restart timeout interval. This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." REFERENCE "Graceful OSPF Restart, Appendix B.1, Global Parameters (Minimum subset)" DEFVAL { 120 } ::= { ospfv3GeneralGroup 16 }
ospfv3RestartStrictLsaChecking OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-write STATUS current DESCRIPTION "Indicates if strict LSA checking is enabled for graceful restart. A value of true (1) indicates that strict LSA checking is enabled. This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." REFERENCE "Graceful OSPF Restart, Appendix B.2, Global Parameters (Optional)" DEFVAL { true } ::= { ospfv3GeneralGroup 17 }
ospfv3RestartStatus OBJECT-TYPE
SYNTAX INTEGER { notRestarting(1), plannedRestart(2), unplannedRestart(3) } MAX-ACCESS read-only STATUS current DESCRIPTION "The current status of OSPF graceful restart capability." ::= { ospfv3GeneralGroup 18 }
ospfv3RestartAge OBJECT-TYPE
SYNTAX Ospfv3UpToRefreshIntervalTC UNITS "seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "Remaining time in the current OSPF graceful restart interval." ::= { ospfv3GeneralGroup 19 }
ospfv3RestartExitReason OBJECT-TYPE
SYNTAX INTEGER { none(1), inProgress(2), completed(3), timedOut(4), topologyChanged(5) } MAX-ACCESS read-only STATUS current DESCRIPTION "Describes the outcome of the last attempt at a graceful restart. none: no restart has yet been attempted. inProgress: a restart attempt is currently underway. completed: the last restart completed successfully. timedOut: the last restart timed out. topologyChanged: the last restart was aborted due to a topology change." ::= { ospfv3GeneralGroup 20 }
ospfv3NotificationEnable OBJECT-TYPE
-
-
SYNTAX TruthValue
MAX-ACCESS read-write
STATUS current
DESCRIPTION-
"This object provides a coarse level of control
-
-
-
over the generation of OSPFv3 notifications.
-
-
-
-
If this object is set to true (1), then it enables the generation of OSPFv3 notifications. If it is set to false (2), these notifications are not generated.
-
-
This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." ::= { ospfv3GeneralGroup 21 }
ospfv3StubRouterSupport OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "The router's support for stub router functionality. An object value of true (1) indicates that stub router functionality is supported." REFERENCE "OSPF Stub Router Advertisement" ::= { ospfv3GeneralGroup 22 }
ospfv3StubRouterAdvertisement OBJECT-TYPE
SYNTAX INTEGER { doNotAdvertise(1), advertise(2) } MAX-ACCESS read-write STATUS current DESCRIPTION "This object controls the advertisement of stub LSAs by the router. The value doNotAdvertise (1) will result in the advertisement of standard LSAs and is the default value. This object is persistent, and when written, the entity SHOULD save the change to non-volatile storage." REFERENCE "OSPF Stub Router Advertisement, Section 2, Proposed Solution" DEFVAL { doNotAdvertise } ::= { ospfv3GeneralGroup 23 }
ospfv3DiscontinuityTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime on the most recent occasion at which any one of this MIB's counters suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this object contains a zero value." ::= { ospfv3GeneralGroup 24 }
-
ospfv3RestartTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime on the most recent occasion at which the ospfv3RestartExitReason was updated." ::= { ospfv3GeneralGroup 25 }
-- The OSPFv3 Area Data Structure contains information -- regarding the various areas. The interfaces and
-- virtual links are configured as part of these areas.
-- Area 0, by definition, is the backbone area.ospfv3AreaTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3AreaEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information describing the configured parameters and cumulative statistics of the router's attached areas. The interfaces and virtual links are configured as part of these areas. Area 0, by definition, is the backbone area." REFERENCE "OSPF Version 2, Section 6, The Area Data Structure" ::= { ospfv3Objects 2 }
ospfv3AreaEntry OBJECT-TYPE
SYNTAX Ospfv3AreaEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information describing the configured parameters and cumulative statistics of one of the router's attached areas. The information in this table is persistent, and when written, the entity SHOULD save the a change to non-volatile storage." INDEX { ospfv3AreaId } ::= { ospfv3AreaTable 1 }
Ospfv3AreaEntry ::= SEQUENCE {
ospfv3AreaId Ospfv3AreaIdTC, ospfv3AreaImportAsExtern INTEGER, ospfv3AreaSpfRuns Counter32, ospfv3AreaBdrRtrCount Gauge32, ospfv3AreaAsBdrRtrCount Gauge32, ospfv3AreaScopeLsaCount Gauge32, ospfv3AreaScopeLsaCksumSum Unsigned32, ospfv3AreaSummary INTEGER, ospfv3AreaRowStatus RowStatus, ospfv3AreaStubMetric BigMetric, ospfv3AreaNssaTranslatorRole INTEGER, ospfv3AreaNssaTranslatorState INTEGER, ospfv3AreaNssaTranslatorStabInterval Unsigned32, ospfv3AreaNssaTranslatorEvents Counter32, ospfv3AreaStubMetricType INTEGER, ospfv3AreaTEEnabled TruthValue }
ospfv3AreaId OBJECT-TYPE
SYNTAX Ospfv3AreaIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "A 32-bit unsigned integer uniquely identifying an area. Area ID 0 is used for the OSPFv3 backbone." REFERENCE "OSPF Version 2, Appendix C.2, Area parameters" ::= { ospfv3AreaEntry 1 }
ospfv3AreaImportAsExtern OBJECT-TYPE
SYNTAX INTEGER { importExternal(1), -- normal area importNoExternal(2), -- stub area importNssa(3) -- not-so-stubby-area } MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates whether an area is a stub area, NSSA, or standard area. AS-scope LSAs are not imported into stub areas or NSSAs. NSSAs import AS-External data as NSSA LSAs that have Area-scope." REFERENCE "OSPF Version 2, Appendix C.2, Area parameters" DEFVAL { importExternal } ::= { ospfv3AreaEntry 2 }
ospfv3AreaSpfRuns OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times that the intra-area route table has been calculated using this area's link state database. This is typically done using Dijkstra's algorithm. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of ospfv3DiscontinuityTime." ::= { ospfv3AreaEntry 3 }
ospfv3AreaBdrRtrCount OBJECT-TYPE
SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of area border routers reachable within this area. This is initially zero, and is calculated in each Shortest Path First (SPF) pass." DEFVAL { 0 } ::= { ospfv3AreaEntry 4 }
ospfv3AreaAsBdrRtrCount OBJECT-TYPE
SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of Autonomous System border routers reachable within this area. This is initially zero, and is calculated in each SPF pass." DEFVAL { 0 } ::= { ospfv3AreaEntry 5 }
ospfv3AreaScopeLsaCount OBJECT-TYPE
SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of Area-scope link state advertisements in this area's link state database." DEFVAL { 0 } ::= { ospfv3AreaEntry 6 }
ospfv3AreaScopeLsaCksumSum OBJECT-TYPE
SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "The 32-bit unsigned sum of the Area-scope link state advertisements' LS checksums contained in this area's link state database. The sum can be used to determine if there has been a change in a router's link state database or to compare the link state database of two routers." ::= { ospfv3AreaEntry 7 }
ospfv3AreaSummary OBJECT-TYPE
SYNTAX INTEGER { noAreaSummary(1), sendAreaSummary(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "The variable ospfv3AreaSummary controls the import of Inter-Area LSAs into stub and NSSA areas. It has no effect on other areas.
-
-
-
If it is noAreaSummary, the router will neither originate nor propagate Inter-Area LSAs into the stub or NSSA area. It will only advertise a default route.
-
-
If it is sendAreaSummary, the router will both summarize and propagate Inter-Area LSAs." DEFVAL { sendAreaSummary } ::= { ospfv3AreaEntry 8 }
ospfv3AreaRowStatus OBJECT-TYPE
SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object permits management of the table by facilitating actions such as row creation, construction, and destruction. The value of this object has no effect on whether other objects in this conceptual row can be modified." ::= { ospfv3AreaEntry 9 }
ospfv3AreaStubMetric OBJECT-TYPE
SYNTAX BigMetric MAX-ACCESS read-create STATUS current DESCRIPTION "The metric value advertised for the default route into stub and NSSA areas. By default, this equals the least metric among the interfaces to other areas." ::= { ospfv3AreaEntry 10 }
ospfv3AreaNssaTranslatorRole OBJECT-TYPE
SYNTAX INTEGER { always(1), candidate(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates an NSSA border router's policy to perform NSSA translation of NSSA-LSAs into AS-External-LSAs." DEFVAL { candidate } ::= { ospfv3AreaEntry 11 }
ospfv3AreaNssaTranslatorState OBJECT-TYPE
SYNTAX INTEGER { enabled(1), elected(2), disabled(3) } MAX-ACCESS read-only STATUS current DESCRIPTION "Indicates if and how an NSSA border router is performing NSSA translation of NSSA-LSAs into AS-External-LSAs. When this object is set to 'enabled', the NSSA border router's ospfv3AreaNssaTranslatorRole has been set to 'always'. When this object is set to 'elected', a candidate NSSA border router is translating NSSA-LSAs into AS-External-LSAs. When this object is set to 'disabled', a candidate NSSA Border router is NOT translating NSSA-LSAs into AS-External-LSAs." ::= { ospfv3AreaEntry 12 }
ospfv3AreaNssaTranslatorStabInterval OBJECT-TYPE
SYNTAX Unsigned32 UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The stability interval defined as the number of seconds after an elected translator determines its services are no longer required that it should continue to perform its translation duties." DEFVAL { 40 } ::= { ospfv3AreaEntry 13 }
ospfv3AreaNssaTranslatorEvents OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "Indicates the number of Translator state changes that have occurred since the last start-up of the OSPFv3 routing process. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of ospfv3DiscontinuityTime." ::= { ospfv3AreaEntry 14 }
ospfv3AreaStubMetricType OBJECT-TYPE
SYNTAX INTEGER { ospfv3Metric(1), -- OSPF Metric comparableCost(2), -- external type 1 nonComparable(3) -- external type 2 } MAX-ACCESS read-create STATUS current DESCRIPTION "This variable assigns the type of metric advertised as a default route." DEFVAL { ospfv3Metric } ::= { ospfv3AreaEntry 15 }
ospfv3AreaTEEnabled OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates whether or not traffic engineering is enabled in the area. The object is set to the value true (1) to enable traffic engineering. Traffic engineering is disabled by default." DEFVAL { false } ::= { ospfv3AreaEntry 16 } -- OSPFv3 AS-Scope Link State Database
ospfv3AsLsdbTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3AsLsdbEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The OSPFv3 Process's AS-scope link state database (LSDB). The LSDB contains the AS-scope link state advertisements from throughout the areas that the device is attached to." ::= { ospfv3Objects 3 }
ospfv3AsLsdbEntry OBJECT-TYPE
SYNTAX Ospfv3AsLsdbEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A single AS-scope link state advertisement." INDEX { ospfv3AsLsdbType, ospfv3AsLsdbRouterId, ospfv3AsLsdbLsid } ::= { ospfv3AsLsdbTable 1 }
Ospfv3AsLsdbEntry ::= SEQUENCE {
ospfv3AsLsdbType Unsigned32, ospfv3AsLsdbRouterId Ospfv3RouterIdTC, ospfv3AsLsdbLsid Ospfv3LsIdTC, ospfv3AsLsdbSequence Ospfv3LsaSequenceTC, ospfv3AsLsdbAge Ospfv3LsaAgeTC, ospfv3AsLsdbChecksum Integer32, ospfv3AsLsdbAdvertisement OCTET STRING, ospfv3AsLsdbTypeKnown TruthValue }
ospfv3AsLsdbType OBJECT-TYPE
SYNTAX Unsigned32(0..'FFFFFFFF'h) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The type of the link state advertisement. Each link state type has a separate advertisement format. AS-scope LSAs not recognized by the router may be stored in the database." ::= { ospfv3AsLsdbEntry 1 }
ospfv3AsLsdbRouterId OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The 32-bit number that uniquely identifies the originating router in the Autonomous System." REFERENCE "OSPF Version 2, Appendix C.1, Global parameters" ::= { ospfv3AsLsdbEntry 2 }
ospfv3AsLsdbLsid OBJECT-TYPE
SYNTAX Ospfv3LsIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Link State ID is an LS type-specific field containing a unique identifier; it identifies the piece of the routing domain that is being described by the advertisement. In contrast to OSPFv2, the LSID has no addressing semantics." ::= { ospfv3AsLsdbEntry 3 }
-- Note that the OSPF sequence number is a 32-bit signed -- integer. It starts with the value '80000001'h
-- or -'7FFFFFFF'h, and increments until '7FFFFFFF'h.
-- Thus, a typical sequence number will be very negative.ospfv3AsLsdbSequence OBJECT-TYPE
SYNTAX Ospfv3LsaSequenceTC MAX-ACCESS read-only STATUS current DESCRIPTION "The sequence number field is a signed 32-bit integer. It is used to detect old and duplicate link state advertisements. The space of sequence numbers is linearly ordered. The larger the sequence number, the more recent the advertisement." REFERENCE "OSPF Version 2, Section 12.1.6, LS sequence number" ::= { ospfv3AsLsdbEntry 4 }
ospfv3AsLsdbAge OBJECT-TYPE
SYNTAX Ospfv3LsaAgeTC UNITS "seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "This field is the age of the link state advertisement in seconds. The high-order bit of the LS age field is considered the DoNotAge bit for support of on-demand circuits." REFERENCE "OSPF Version 2, Section 12.1.1, LS age; Extending OSPF to Support Demand Circuits, Section 2.2, The LS age field." ::= { ospfv3AsLsdbEntry 5 }
ospfv3AsLsdbChecksum OBJECT-TYPE
SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "This field is the checksum of the complete contents of the advertisement, excepting the age field. The age field is excepted so that an advertisement's age can be incremented without updating the checksum. The checksum used is the same that is used for ISO connectionless datagrams; it is commonly referred to as the Fletcher checksum." REFERENCE "OSPF Version 2, Section 12.1.7, LS checksum" ::= { ospfv3AsLsdbEntry 6 }
ospfv3AsLsdbAdvertisement OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (1..65535)) MAX-ACCESS read-only STATUS current DESCRIPTION "The entire link state advertisement, including its header." ::= { ospfv3AsLsdbEntry 7 }
ospfv3AsLsdbTypeKnown OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "The value true (1) indicates that the LSA type is recognized by this router." ::= { ospfv3AsLsdbEntry 8 } -- OSPFv3 Area-Scope Link State Database
ospfv3AreaLsdbTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3AreaLsdbEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The OSPFv3 Process's Area-scope LSDB. The LSDB contains the Area-scope link state advertisements from throughout the area that the device is attached to." ::= { ospfv3Objects 4 }
ospfv3AreaLsdbEntry OBJECT-TYPE
SYNTAX Ospfv3AreaLsdbEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A single Area-scope link state advertisement." INDEX { ospfv3AreaLsdbAreaId, ospfv3AreaLsdbType, ospfv3AreaLsdbRouterId, ospfv3AreaLsdbLsid } ::= { ospfv3AreaLsdbTable 1 }
Ospfv3AreaLsdbEntry ::= SEQUENCE {
ospfv3AreaLsdbAreaId Ospfv3AreaIdTC, ospfv3AreaLsdbType Unsigned32, ospfv3AreaLsdbRouterId Ospfv3RouterIdTC, ospfv3AreaLsdbLsid Ospfv3LsIdTC, ospfv3AreaLsdbSequence Ospfv3LsaSequenceTC, ospfv3AreaLsdbAge Ospfv3LsaAgeTC, ospfv3AreaLsdbChecksum Integer32, ospfv3AreaLsdbAdvertisement OCTET STRING, ospfv3AreaLsdbTypeKnown TruthValue }
ospfv3AreaLsdbAreaId OBJECT-TYPE
SYNTAX Ospfv3AreaIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The 32-bit identifier of the Area from which the LSA was received." REFERENCE "OSPF Version 2, Appendix C.2, Area parameters" ::= { ospfv3AreaLsdbEntry 1 }
ospfv3AreaLsdbType OBJECT-TYPE
SYNTAX Unsigned32(0..'FFFFFFFF'h) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The type of the link state advertisement. Each link state type has a separate advertisement format. Area-scope LSAs unrecognized by the router are also stored in this database." ::= { ospfv3AreaLsdbEntry 2 }
ospfv3AreaLsdbRouterId OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The 32-bit number that uniquely identifies the originating router in the Autonomous System." REFERENCE "OSPF Version 2, Appendix C.1, Global parameters" ::= { ospfv3AreaLsdbEntry 3 }
ospfv3AreaLsdbLsid OBJECT-TYPE
SYNTAX Ospfv3LsIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Link State ID is an LS type-specific field containing a unique identifier; it identifies the piece of the routing domain that is being described by the advertisement. In contrast to OSPFv2, the LSID has no addressing semantics." ::= { ospfv3AreaLsdbEntry 4 }
-- Note that the OSPF sequence number is a 32-bit signed -- integer. It starts with the value '80000001'h
-- or -'7FFFFFFF'h, and increments until '7FFFFFFF'h.
-- Thus, a typical sequence number will be very negative.ospfv3AreaLsdbSequence OBJECT-TYPE
SYNTAX Ospfv3LsaSequenceTC MAX-ACCESS read-only STATUS current DESCRIPTION "The sequence number field is a signed 32-bit integer. It is used to detect old and duplicate link state advertisements. The space of sequence numbers is linearly ordered. The larger the sequence number, the more recent the advertisement." REFERENCE "OSPF Version 2, Section 12.1.6, LS sequence number" ::= { ospfv3AreaLsdbEntry 5 }
ospfv3AreaLsdbAge OBJECT-TYPE
SYNTAX Ospfv3LsaAgeTC UNITS "seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "This field is the age of the link state advertisement in seconds. The high-order bit of the LS age field is considered the DoNotAge bit for support of on-demand circuits." REFERENCE "OSPF Version 2, Section 12.1.1, LS age; Extending OSPF to Support Demand Circuits, Section 2.2, The LS age field." ::= { ospfv3AreaLsdbEntry 6 }
ospfv3AreaLsdbChecksum OBJECT-TYPE
SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "This field is the checksum of the complete contents of the advertisement, excepting the age field. The age field is excepted so that an advertisement's age can be incremented without updating the checksum. The checksum used is the same that is used for ISO connectionless datagrams; it is commonly referred to as the Fletcher checksum." REFERENCE "OSPF Version 2, Section 12.1.7, LS checksum" ::= { ospfv3AreaLsdbEntry 7 }
ospfv3AreaLsdbAdvertisement OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (1..65535)) MAX-ACCESS read-only STATUS current DESCRIPTION "The entire link state advertisement, including its header." ::= { ospfv3AreaLsdbEntry 8 }
ospfv3AreaLsdbTypeKnown OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "The value true (1) indicates that the LSA type is recognized by this router." ::= { ospfv3AreaLsdbEntry 9 } -- OSPFv3 Link-Scope Link State Database, for non-virtual interfaces
ospfv3LinkLsdbTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3LinkLsdbEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The OSPFv3 Process's Link-scope LSDB for non-virtual interfaces. The LSDB contains the Link-scope link state advertisements from the interfaces that the device is attached to." ::= { ospfv3Objects 5 }
ospfv3LinkLsdbEntry OBJECT-TYPE
SYNTAX Ospfv3LinkLsdbEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A single Link-scope link state advertisement." INDEX { ospfv3LinkLsdbIfIndex, ospfv3LinkLsdbIfInstId, ospfv3LinkLsdbType, ospfv3LinkLsdbRouterId, ospfv3LinkLsdbLsid } ::= { ospfv3LinkLsdbTable 1 }
Ospfv3LinkLsdbEntry ::= SEQUENCE {
ospfv3LinkLsdbIfIndex InterfaceIndex, ospfv3LinkLsdbIfInstId Ospfv3IfInstIdTC, ospfv3LinkLsdbType Unsigned32, ospfv3LinkLsdbRouterId Ospfv3RouterIdTC, ospfv3LinkLsdbLsid Ospfv3LsIdTC, ospfv3LinkLsdbSequence Ospfv3LsaSequenceTC, ospfv3LinkLsdbAge Ospfv3LsaAgeTC, ospfv3LinkLsdbChecksum Integer32, ospfv3LinkLsdbAdvertisement OCTET STRING, ospfv3LinkLsdbTypeKnown TruthValue }
ospfv3LinkLsdbIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex MAX-ACCESS not-accessible STATUS current DESCRIPTION "The identifier of the link from which the LSA was received." ::= { ospfv3LinkLsdbEntry 1 }
ospfv3LinkLsdbIfInstId OBJECT-TYPE
SYNTAX Ospfv3IfInstIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The identifier of the interface instance from which the LSA was received." ::= { ospfv3LinkLsdbEntry 2 }
ospfv3LinkLsdbType OBJECT-TYPE
SYNTAX Unsigned32(0..'FFFFFFFF'h) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The type of the link state advertisement. Each link state type has a separate advertisement format. Link-scope LSAs unrecognized by the router are also stored in this database." ::= { ospfv3LinkLsdbEntry 3 }
ospfv3LinkLsdbRouterId OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The 32-bit number that uniquely identifies the originating router in the Autonomous System." REFERENCE "OSPF Version 2, Appendix C.1, Global parameters" ::= { ospfv3LinkLsdbEntry 4 }
ospfv3LinkLsdbLsid OBJECT-TYPE
SYNTAX Ospfv3LsIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Link State ID is an LS type-specific field containing a unique identifier; it identifies the piece of the routing domain that is being described by the advertisement. In contrast to OSPFv2, the LSID has no addressing semantics. However, in OSPFv3 the Link State ID always contains the flooding scope of the LSA." ::= { ospfv3LinkLsdbEntry 5 }
-- Note that the OSPF sequence number is a 32-bit signed -- integer. It starts with the value '80000001'h
-- or -'7FFFFFFF'h, and increments until '7FFFFFFF'h.
-- Thus, a typical sequence number will be very negative.ospfv3LinkLsdbSequence OBJECT-TYPE
SYNTAX Ospfv3LsaSequenceTC MAX-ACCESS read-only STATUS current DESCRIPTION "The sequence number field is a signed 32-bit integer. It is used to detect old and duplicate link state advertisements. The space of sequence numbers is linearly ordered. The larger the sequence number, the more recent the advertisement." REFERENCE "OSPF Version 2, Section 12.1.6, LS sequence number" ::= { ospfv3LinkLsdbEntry 6 }
ospfv3LinkLsdbAge OBJECT-TYPE
SYNTAX Ospfv3LsaAgeTC UNITS "seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "This field is the age of the link state advertisement in seconds. The high-order bit of the LS age field is considered the DoNotAge bit for support of on-demand circuits." REFERENCE "OSPF Version 2, Section 12.1.1, LS age; Extending OSPF to Support Demand Circuits, Section 2.2, The LS age field." ::= { ospfv3LinkLsdbEntry 7 }
ospfv3LinkLsdbChecksum OBJECT-TYPE
SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "This field is the checksum of the complete contents of the advertisement, excepting the age field. The age field is excepted so that an advertisement's age can be incremented without updating the checksum. The checksum used is the same that is used for ISO connectionless datagrams; it is commonly referred to as the Fletcher checksum." REFERENCE "OSPF Version 2, Section 12.1.7, LS checksum" ::= { ospfv3LinkLsdbEntry 8 }
ospfv3LinkLsdbAdvertisement OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (1..65535)) MAX-ACCESS read-only STATUS current DESCRIPTION "The entire link state advertisement, including its header." ::= { ospfv3LinkLsdbEntry 9 }
ospfv3LinkLsdbTypeKnown OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "The value true (1) indicates that the LSA type is recognized by this router." ::= { ospfv3LinkLsdbEntry 10 }
-- OSPF Host Table
ospfv3HostTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3HostEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Host/Metric Table indicates what hosts are directly attached to the router and their corresponding metrics." REFERENCE "OSPF Version 2, Appendix C.7, Host route parameters" ::= { ospfv3Objects 6 }
ospfv3HostEntry OBJECT-TYPE
SYNTAX Ospfv3HostEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A metric to be advertised when a given host is reachable. The information in this table is persistent, and when written, the entity SHOULD save the change to non-volatile storage." INDEX { ospfv3HostAddressType, ospfv3HostAddress } ::= { ospfv3HostTable 1 }
Ospfv3HostEntry ::= SEQUENCE {
ospfv3HostAddressType InetAddressType, ospfv3HostAddress InetAddress, ospfv3HostMetric Metric, ospfv3HostRowStatus RowStatus, ospfv3HostAreaID Ospfv3AreaIdTC }
ospfv3HostAddressType OBJECT-TYPE
SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The address type of ospfv3HostAddress. Only IPv6 global address type is expected." REFERENCE "OSPF Version 2, Appendix C.7, Host route parameters" ::= { ospfv3HostEntry 1 }
ospfv3HostAddress OBJECT-TYPE
SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The IPv6 address of the host. Must be an IPv6 global address." REFERENCE "OSPF Version 2, Appendix C.7, Host route parameters" ::= { ospfv3HostEntry 2 }
ospfv3HostMetric OBJECT-TYPE
SYNTAX Metric MAX-ACCESS read-create STATUS current DESCRIPTION "The metric to be advertised." REFERENCE "OSPF Version 2, Appendix C.7, Host route parameters" ::= { ospfv3HostEntry 3 }
ospfv3HostRowStatus OBJECT-TYPE
SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object permits management of the table by facilitating actions such as row creation, construction, and destruction. The value of this object has no effect on whether other objects in this conceptual row can be modified." ::= { ospfv3HostEntry 4 }
ospfv3HostAreaID OBJECT-TYPE
SYNTAX Ospfv3AreaIdTC MAX-ACCESS read-create STATUS current DESCRIPTION "The Area the host entry is to be found within. By default, the area for the subsuming OSPFv3 interface, or Area 0 if there is no subsuming interface." REFERENCE "OSPF Version 2, Appendix C.2, Area parameters" ::= { ospfv3HostEntry 5 }
-- OSPFv3 Interface Table
ospfv3IfTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3IfEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The OSPFv3 Interface Table describes the interfaces from the viewpoint of OSPFv3." REFERENCE "OSPF for IPv6, Appendix C.3, Router Interface Parameters" ::= { ospfv3Objects 7 }
ospfv3IfEntry OBJECT-TYPE
SYNTAX Ospfv3IfEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The OSPFv3 Interface Entry describes one interface from the viewpoint of OSPFv3. The information in this table is persistent, and when written, the entity SHOULD save the change to non-volatile storage." INDEX { ospfv3IfIndex, ospfv3IfInstId } ::= { ospfv3IfTable 1 }
Ospfv3IfEntry ::= SEQUENCE {
ospfv3IfIndex InterfaceIndex, ospfv3IfInstId Ospfv3IfInstIdTC, ospfv3IfAreaId Ospfv3AreaIdTC, ospfv3IfType INTEGER, ospfv3IfAdminStatus Status, ospfv3IfRtrPriority DesignatedRouterPriority, ospfv3IfTransitDelay Ospfv3UpToRefreshIntervalTC, ospfv3IfRetransInterval Ospfv3UpToRefreshIntervalTC, ospfv3IfHelloInterval HelloRange, ospfv3IfRtrDeadInterval Ospfv3DeadIntervalRangeTC, ospfv3IfPollInterval Unsigned32, ospfv3IfState INTEGER, ospfv3IfDesignatedRouter Ospfv3RouterIdTC, ospfv3IfBackupDesignatedRouter Ospfv3RouterIdTC, ospfv3IfEvents Counter32, ospfv3IfRowStatus RowStatus, ospfv3IfDemand TruthValue, ospfv3IfMetricValue Metric, ospfv3IfLinkScopeLsaCount Gauge32, ospfv3IfLinkLsaCksumSum Unsigned32, ospfv3IfDemandNbrProbe TruthValue, ospfv3IfDemandNbrProbeRetransLimit Unsigned32, ospfv3IfDemandNbrProbeInterval Unsigned32, ospfv3IfTEDisabled TruthValue, ospfv3IfLinkLSASuppression TruthValue }
ospfv3IfIndex OBJECT-TYPE
SYNTAX InterfaceIndex MAX-ACCESS not-accessible STATUS current DESCRIPTION "The interface index of this OSPFv3 interface. It corresponds to the interface index of the IPv6 interface on which OSPFv3 is configured." ::= { ospfv3IfEntry 1 }
ospfv3IfInstId OBJECT-TYPE
SYNTAX Ospfv3IfInstIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "Enables multiple interface instances of OSPFv3 to be run over a single link. Each interface instance would be assigned a separate ID. This ID has local link significance only." ::= { ospfv3IfEntry 2 }
ospfv3IfAreaId OBJECT-TYPE
SYNTAX Ospfv3AreaIdTC MAX-ACCESS read-create STATUS current DESCRIPTION "A 32-bit integer uniquely identifying the area to which the interface connects. Area ID 0 is used for the OSPFv3 backbone." DEFVAL { 0 } ::= { ospfv3IfEntry 3 }
ospfv3IfType OBJECT-TYPE
SYNTAX INTEGER { broadcast(1), nbma(2), pointToPoint(3), pointToMultipoint(5) } MAX-ACCESS read-create STATUS current DESCRIPTION "The OSPFv3 interface type." ::= { ospfv3IfEntry 4 }
ospfv3IfAdminStatus OBJECT-TYPE
SYNTAX Status MAX-ACCESS read-create STATUS current DESCRIPTION "The OSPFv3 interface's administrative status. The value formed on the interface; the interface will be advertised as an internal route to some area. The value 'disabled' denotes that the interface is external to OSPFv3. Note that a value of 'disabled' for the object ospfv3AdminStatus will override a value of 'enabled' for the interface." DEFVAL { enabled } ::= { ospfv3IfEntry 5 }
ospfv3IfRtrPriority OBJECT-TYPE
SYNTAX DesignatedRouterPriority MAX-ACCESS read-create STATUS current DESCRIPTION "The priority of this interface. Used in multi-access networks, this field is used in the designated-router election algorithm. The value 0 signifies that the router is not eligible to become the Designated Router on this particular network. In the event of a tie in this value, routers will use their Router ID as a tie breaker." DEFVAL { 1 } ::= { ospfv3IfEntry 6 }
ospfv3IfTransitDelay OBJECT-TYPE
SYNTAX Ospfv3UpToRefreshIntervalTC UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The estimated number of seconds it takes to transmit a Link State Update packet over this interface. LSAs contained in the update packet must have their age incremented by this amount before transmission. This value should take into account the transmission and propagation delays of the interface." REFERENCE "OSPF for IPv6, Appendix C.3, Router Interface Parameters." DEFVAL { 1 } ::= { ospfv3IfEntry 7 }
ospfv3IfRetransInterval OBJECT-TYPE
SYNTAX Ospfv3UpToRefreshIntervalTC UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The number of seconds between link state advertisement retransmissions for adjacencies belonging to this interface. This value is also used when retransmitting database description and Link State Request packets." DEFVAL { 5 } ::= { ospfv3IfEntry 8 }
ospfv3IfHelloInterval OBJECT-TYPE
SYNTAX HelloRange UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The length of time, in seconds, between the Hello packets that the router sends on the interface. This value must be the same for all routers attached to a common network." DEFVAL { 10 } ::= { ospfv3IfEntry 9 }
ospfv3IfRtrDeadInterval OBJECT-TYPE
SYNTAX Ospfv3DeadIntervalRangeTC UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The number of seconds that a router's Hello packets have not been seen before its neighbors declare the router down on the interface. This should be some multiple of the Hello interval. This value must be the same for all routers attached to a common network." DEFVAL { 40 } ::= { ospfv3IfEntry 10 }
ospfv3IfPollInterval OBJECT-TYPE
SYNTAX Unsigned32 UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The larger time interval, in seconds, between the Hello packets sent to an inactive, non-broadcast multi-access neighbor." DEFVAL { 120 } ::= { ospfv3IfEntry 11 }
ospfv3IfState OBJECT-TYPE
SYNTAX INTEGER { down(1), loopback(2), waiting(3), pointToPoint(4), designatedRouter(5), backupDesignatedRouter(6), otherDesignatedRouter(7), standby(8) } MAX-ACCESS read-only STATUS current DESCRIPTION "The OSPFv3 interface state. An interface may be in standby state if there are multiple interfaces on the link and another interface is active. The interface may be in Down state if the underlying IPv6 interface is down or if the admin status is 'disabled' either globally or for the interface." ::= { ospfv3IfEntry 12 }
ospfv3IfDesignatedRouter OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS read-only STATUS current DESCRIPTION "The Router ID of the Designated Router." ::= { ospfv3IfEntry 13 }
ospfv3IfBackupDesignatedRouter OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS read-only STATUS current DESCRIPTION "The Router ID of the Backup Designated Router." ::= { ospfv3IfEntry 14 }
ospfv3IfEvents OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times this OSPFv3 interface has changed its state or an error has occurred. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of ospfv3DiscontinuityTime." ::= { ospfv3IfEntry 15 }
-
ospfv3IfRowStatus OBJECT-TYPE
SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object permits management of the table by facilitating actions such as row creation, construction, and destruction. The value of this object has no effect on whether other objects in this conceptual row can be modified." ::= { ospfv3IfEntry 16 }
ospfv3IfDemand OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates whether Demand OSPFv3 procedures (Hello suppression to FULL neighbors and setting the DoNotAge flag on propagated LSAs) should be performed on this interface." DEFVAL { false } ::= { ospfv3IfEntry 17 }
ospfv3IfMetricValue OBJECT-TYPE
SYNTAX Metric MAX-ACCESS read-create STATUS current DESCRIPTION "The metric assigned to this interface. The default value of the metric is 'Reference Bandwidth / ifSpeed'. The value of the reference bandwidth can be set in the ospfv3ReferenceBandwidth object." ::= { ospfv3IfEntry 18 }
-
ospfv3IfLinkScopeLsaCount OBJECT-TYPE
SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of Link-scope link state advertisements in this link's link state database." ::= { ospfv3IfEntry 19 }
-
ospfv3IfLinkLsaCksumSum OBJECT-TYPE
SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "The 32-bit unsigned sum of the Link-scope link state advertisements' LS checksums contained in this link's link state database. The sum can be used to determine if there has been a change in a router's link state database or to compare the link state database of two routers." ::= { ospfv3IfEntry 20 }
ospfv3IfDemandNbrProbe OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates whether or not neighbor probing is enabled to determine whether or not the neighbor is inactive. Neighbor probing is disabled by default." DEFVAL { false } ::= { ospfv3IfEntry 21 }
ospfv3IfDemandNbrProbeRetransLimit OBJECT-TYPE
SYNTAX Unsigned32 MAX-ACCESS read-create STATUS current DESCRIPTION "The number of consecutive LSA retransmissions before the neighbor is deemed inactive and the neighbor adjacency is brought down." DEFVAL { 10 } ::= { ospfv3IfEntry 22}
ospfv3IfDemandNbrProbeInterval OBJECT-TYPE
SYNTAX Unsigned32 UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "Defines how often the neighbor will be probed." DEFVAL { 120 } ::= { ospfv3IfEntry 23 }
ospfv3IfTEDisabled OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates whether or not traffic engineering is disabled on the interface when traffic engineering is enabled in the area where the interface is attached. The object is set to the value true (1) to disable traffic engineering on the interface. Traffic engineering is enabled by default on the interface when traffic engineering is enabled in the area where the interface is attached." DEFVAL { false } ::= { ospfv3IfEntry 24 }
ospfv3IfLinkLSASuppression OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-create STATUS current DESCRIPTION "Specifies whether or not link LSA origination is suppressed for broadcast or NBMA interface types. The object is set to value true (1) to suppress the origination." REFERENCE "OSPF for IPv6, Appendix C.3, Router Interface Parameters" DEFVAL { false } ::= { ospfv3IfEntry 25 } -- OSPFv3 Virtual Interface Table
ospfv3VirtIfTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3VirtIfEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information about this router's virtual interfaces that the OSPFv3 Process is configured to carry on." REFERENCE "OSPF for IPv6, Appendix C.4, Virtual Link Parameters" ::= { ospfv3Objects 8 }
ospfv3VirtIfEntry OBJECT-TYPE
SYNTAX Ospfv3VirtIfEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information about a single virtual interface. The information in this table is persistent, and when written, the entity SHOULD save the change to non-volatile storage." INDEX { ospfv3VirtIfAreaId, ospfv3VirtIfNeighbor } ::= { ospfv3VirtIfTable 1 }
Ospfv3VirtIfEntry ::= SEQUENCE {
ospfv3VirtIfAreaId Ospfv3AreaIdTC, ospfv3VirtIfNeighbor Ospfv3RouterIdTC, ospfv3VirtIfIndex InterfaceIndex, ospfv3VirtIfInstId Ospfv3IfInstIdTC, ospfv3VirtIfTransitDelay Ospfv3UpToRefreshIntervalTC, ospfv3VirtIfRetransInterval Ospfv3UpToRefreshIntervalTC, ospfv3VirtIfHelloInterval HelloRange, ospfv3VirtIfRtrDeadInterval Ospfv3DeadIntervalRangeTC, ospfv3VirtIfState INTEGER, ospfv3VirtIfEvents Counter32, ospfv3VirtIfRowStatus RowStatus, ospfv3VirtIfLinkScopeLsaCount Gauge32, ospfv3VirtIfLinkLsaCksumSum Unsigned32 }
ospfv3VirtIfAreaId OBJECT-TYPE
SYNTAX Ospfv3AreaIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The transit area that the virtual link traverses. By definition, this is not Area 0." ::= { ospfv3VirtIfEntry 1 }
ospfv3VirtIfNeighbor OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Router ID of the virtual neighbor." ::= { ospfv3VirtIfEntry 2 }
ospfv3VirtIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "The local interface index assigned by the OSPFv3 Process to this OSPFv3 virtual interface. It is advertised in Hellos sent over the virtual link and in the router's router-LSAs." ::= { ospfv3VirtIfEntry 3 }
ospfv3VirtIfInstId OBJECT-TYPE
SYNTAX Ospfv3IfInstIdTC MAX-ACCESS read-only STATUS current DESCRIPTION "The local Interface Instance ID assigned by the OSPFv3 Process to this OSPFv3 virtual interface." ::= { ospfv3VirtIfEntry 4 }
ospfv3VirtIfTransitDelay OBJECT-TYPE
SYNTAX Ospfv3UpToRefreshIntervalTC UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The estimated number of seconds it takes to transmit a Link State Update packet over this interface." DEFVAL { 1 } ::= { ospfv3VirtIfEntry 5 }
ospfv3VirtIfRetransInterval OBJECT-TYPE
SYNTAX Ospfv3UpToRefreshIntervalTC UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The number of seconds between link state advertisement retransmissions for adjacencies belonging to this interface. This value is also used when retransmitting database description and Link State Request packets. This value should be well over the expected round-trip time." DEFVAL { 5 } ::= { ospfv3VirtIfEntry 6 }
ospfv3VirtIfHelloInterval OBJECT-TYPE
SYNTAX HelloRange UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The length of time, in seconds, between the Hello packets that the router sends on the interface. This value must be the same for the virtual neighbor." DEFVAL { 10 } ::= { ospfv3VirtIfEntry 7 }
ospfv3VirtIfRtrDeadInterval OBJECT-TYPE
SYNTAX Ospfv3DeadIntervalRangeTC UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The number of seconds that a router's Hello packets have not been seen before its neighbors declare the router down. This should be some multiple of the Hello interval. This value must be the same for the virtual neighbor." DEFVAL { 60 } ::= { ospfv3VirtIfEntry 8 }
ospfv3VirtIfState OBJECT-TYPE
SYNTAX INTEGER { down(1), pointToPoint(4) } MAX-ACCESS read-only STATUS current DESCRIPTION "OSPF virtual interface states. The same encoding as the ospfV3IfTable is used." ::= { ospfv3VirtIfEntry 9 }
ospfv3VirtIfEvents OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of state changes or error events on this virtual link. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of ospfv3DiscontinuityTime." ::= { ospfv3VirtIfEntry 10 }
ospfv3VirtIfRowStatus OBJECT-TYPE
SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object permits management of the table by facilitating actions such as row creation, construction, and destruction. The value of this object has no effect on whether other objects in this conceptual row can be modified." ::= { ospfv3VirtIfEntry 11 }
ospfv3VirtIfLinkScopeLsaCount OBJECT-TYPE
SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of Link-scope link state advertisements in this virtual link's link state database." ::= { ospfv3VirtIfEntry 12 }
ospfv3VirtIfLinkLsaCksumSum OBJECT-TYPE
SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "The 32-bit unsigned sum of the Link-scope link state advertisements' LS checksums contained in this virtual link's link state database. The sum can be used to determine if there has been a change in a router's link state database or to compare the link state database of two routers." ::= { ospfv3VirtIfEntry 13 }
-- OSPFv3 Neighbor Table
ospfv3NbrTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3NbrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table describing all neighbors in the locality of the OSPFv3 router." REFERENCE "OSPF Version 2, Section 10, The Neighbor Data Structure" ::= { ospfv3Objects 9 }
ospfv3NbrEntry OBJECT-TYPE
SYNTAX Ospfv3NbrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The information regarding a single neighbor." REFERENCE "OSPF Version 2, Section 10, The Neighbor Data Structure" INDEX { ospfv3NbrIfIndex, ospfv3NbrIfInstId, ospfv3NbrRtrId } ::= { ospfv3NbrTable 1 }
Ospfv3NbrEntry ::= SEQUENCE {
ospfv3NbrIfIndex InterfaceIndex, ospfv3NbrIfInstId Ospfv3IfInstIdTC, ospfv3NbrRtrId Ospfv3RouterIdTC, ospfv3NbrAddressType InetAddressType, ospfv3NbrAddress InetAddress, ospfv3NbrOptions Integer32, ospfv3NbrPriority DesignatedRouterPriority, ospfv3NbrState INTEGER, ospfv3NbrEvents Counter32, ospfv3NbrLsRetransQLen Gauge32, ospfv3NbrHelloSuppressed TruthValue, ospfv3NbrIfId InterfaceIndex, ospfv3NbrRestartHelperStatus INTEGER, ospfv3NbrRestartHelperAge Ospfv3UpToRefreshIntervalTC, ospfv3NbrRestartHelperExitReason INTEGER }
ospfv3NbrIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Local Link ID of the link over which the neighbor can be reached." ::= { ospfv3NbrEntry 1 }
ospfv3NbrIfInstId OBJECT-TYPE
SYNTAX Ospfv3IfInstIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "Interface instance over which the neighbor can be reached. This ID has local link significance only." ::= { ospfv3NbrEntry 2 }
ospfv3NbrRtrId OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "A 32-bit unsigned integer uniquely identifying the neighboring router in the Autonomous System." ::= { ospfv3NbrEntry 3 }
ospfv3NbrAddressType OBJECT-TYPE
SYNTAX InetAddressType MAX-ACCESS read-only STATUS current DESCRIPTION "The address type of ospfv3NbrAddress. Only IPv6 addresses without zone index are expected." ::= { ospfv3NbrEntry 4 }
ospfv3NbrAddress OBJECT-TYPE
SYNTAX InetAddress MAX-ACCESS read-only STATUS current DESCRIPTION "The IPv6 address of the neighbor associated with the local link." ::= { ospfv3NbrEntry 5 }
ospfv3NbrOptions OBJECT-TYPE
SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "A bit mask corresponding to the neighbor's options field." REFERENCE "OSPF for IPv6, Appendix A.2, The Options Field" ::= { ospfv3NbrEntry 6 }
ospfv3NbrPriority OBJECT-TYPE
SYNTAX DesignatedRouterPriority MAX-ACCESS read-only STATUS current DESCRIPTION "The priority of this neighbor in the designated- router election algorithm. The value 0 signifies that the neighbor is not eligible to become the Designated Router on this particular network." ::= { ospfv3NbrEntry 7 }
ospfv3NbrState OBJECT-TYPE
SYNTAX INTEGER { down(1), attempt(2), init(3), twoWay(4), exchangeStart(5), exchange(6), loading(7), full(8) } MAX-ACCESS read-only STATUS current DESCRIPTION "The state of the relationship with this neighbor." REFERENCE "OSPF Version 2, Section 10.1, Neighbor states" ::= { ospfv3NbrEntry 8 }
ospfv3NbrEvents OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times this neighbor relationship has changed state or an error has occurred. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of ospfv3DiscontinuityTime." ::= { ospfv3NbrEntry 9 }
ospfv3NbrLsRetransQLen OBJECT-TYPE
SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The current length of the retransmission queue." ::= { ospfv3NbrEntry 10 }
ospfv3NbrHelloSuppressed OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "Indicates whether Hellos are being suppressed to the neighbor." ::= { ospfv3NbrEntry 11 }
ospfv3NbrIfId OBJECT-TYPE
SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "The Interface ID that the neighbor advertises in its Hello packets on this link, that is, the neighbor's local interface index." ::= { ospfv3NbrEntry 12 }
ospfv3NbrRestartHelperStatus OBJECT-TYPE
SYNTAX INTEGER { notHelping(1), helping(2) } MAX-ACCESS read-only STATUS current DESCRIPTION "Indicates whether the router is acting as a graceful restart helper for the neighbor." ::= { ospfv3NbrEntry 13 }
ospfv3NbrRestartHelperAge OBJECT-TYPE
SYNTAX Ospfv3UpToRefreshIntervalTC UNITS "seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "Remaining time in current OSPF graceful restart interval, if the router is acting as a restart helper for the neighbor." ::= { ospfv3NbrEntry 14 }
ospfv3NbrRestartHelperExitReason OBJECT-TYPE
SYNTAX INTEGER { none(1), inProgress(2), completed(3), timedOut(4), topologyChanged(5) } MAX-ACCESS read-only STATUS current
-
-
DESCRIPTION
-
"Describes the outcome of the last attempt at acting as a graceful restart helper for the neighbor.
-
none: no restart has yet been attempted. inProgress: a restart attempt is currently underway. completed: the last restart completed successfully. timedOut: the last restart timed out. topologyChanged: the last restart was aborted due to a topology change." ::= { ospfv3NbrEntry 15 } -- OSPFv3 Configured Neighbor Table
ospfv3CfgNbrTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3CfgNbrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table describing all configured neighbors. The Configured Neighbors table just gives OSPFv3 information for sending OSPFv3 packets to potential neighbors and is typically used on NBMA and Point-to-Multipoint networks. Once a Hello is received from a neighbor in the Configured Neighbor table, an entry for that neighbor is created in the Neighbor table and adjacency state is maintained there. Neighbors on multi-access or Point-to-Point networks can use multicast addressing, so only Neighbor table entries are created for them." REFERENCE "OSPF Version 2, Section 10, The Neighbor Data Structure" ::= { ospfv3Objects 10 }
ospfv3CfgNbrEntry OBJECT-TYPE
SYNTAX Ospfv3CfgNbrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The information regarding a single configured neighbor.
-
The information in this table is persistent,
and when written, the entity SHOULD save the
change to non-volatile storage."
-
REFERENCE "OSPF Version 2, Section 10, The Neighbor Data Structure" INDEX { ospfv3CfgNbrIfIndex, ospfv3CfgNbrIfInstId, ospfv3CfgNbrAddressType, ospfv3CfgNbrAddress } ::= { ospfv3CfgNbrTable 1 }
Ospfv3CfgNbrEntry ::= SEQUENCE {
ospfv3CfgNbrIfIndex InterfaceIndex, ospfv3CfgNbrIfInstId Ospfv3IfInstIdTC, ospfv3CfgNbrAddressType InetAddressType, ospfv3CfgNbrAddress InetAddress, ospfv3CfgNbrPriority DesignatedRouterPriority, ospfv3CfgNbrRowStatus RowStatus }
ospfv3CfgNbrIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Local Link ID of the link over which the neighbor can be reached." ::= { ospfv3CfgNbrEntry 1 }
ospfv3CfgNbrIfInstId OBJECT-TYPE
SYNTAX Ospfv3IfInstIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "Interface instance over which the neighbor can be reached. This ID has local link significance only." ::= { ospfv3CfgNbrEntry 2 }
ospfv3CfgNbrAddressType OBJECT-TYPE
SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The address type of ospfv3NbrAddress. Only IPv6 addresses without zone index are expected." ::= { ospfv3CfgNbrEntry 3 }
ospfv3CfgNbrAddress OBJECT-TYPE
SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The IPv6 address of the neighbor associated with the local link." ::= { ospfv3CfgNbrEntry 4 }
ospfv3CfgNbrPriority OBJECT-TYPE
SYNTAX DesignatedRouterPriority MAX-ACCESS read-create STATUS current DESCRIPTION "The priority of this neighbor in the designated- router election algorithm. The value 0 signifies that the neighbor is not eligible to become the Designated Router on this particular network." DEFVAL { 1 } ::= { ospfv3CfgNbrEntry 5 }
ospfv3CfgNbrRowStatus OBJECT-TYPE
SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object permits management of the table by facilitating actions such as row creation, construction, and destruction. The value of this object has no effect on whether other objects in this conceptual row can be modified." ::= { ospfv3CfgNbrEntry 6 } -- OSPFv3 Virtual Neighbor Table
ospfv3VirtNbrTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3VirtNbrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table describing all virtual neighbors." REFERENCE "OSPF Version 2, Section 15, Virtual Links" ::= { ospfv3Objects 11 }
ospfv3VirtNbrEntry OBJECT-TYPE
SYNTAX Ospfv3VirtNbrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Virtual neighbor information." INDEX { ospfv3VirtNbrArea, ospfv3VirtNbrRtrId } ::= { ospfv3VirtNbrTable 1 }
Ospfv3VirtNbrEntry ::= SEQUENCE {
ospfv3VirtNbrArea Ospfv3AreaIdTC, ospfv3VirtNbrRtrId Ospfv3RouterIdTC, ospfv3VirtNbrIfIndex InterfaceIndex, ospfv3VirtNbrIfInstId Ospfv3IfInstIdTC, ospfv3VirtNbrAddressType InetAddressType, ospfv3VirtNbrAddress InetAddress, ospfv3VirtNbrOptions Integer32, ospfv3VirtNbrState INTEGER, ospfv3VirtNbrEvents Counter32, ospfv3VirtNbrLsRetransQLen Gauge32, ospfv3VirtNbrHelloSuppressed TruthValue, ospfv3VirtNbrIfId InterfaceIndex, ospfv3VirtNbrRestartHelperStatus INTEGER, ospfv3VirtNbrRestartHelperAge Ospfv3UpToRefreshIntervalTC, ospfv3VirtNbrRestartHelperExitReason INTEGER }
ospfv3VirtNbrArea OBJECT-TYPE
SYNTAX Ospfv3AreaIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The transit area Identifier." ::= { ospfv3VirtNbrEntry 1 }
ospfv3VirtNbrRtrId OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "A 32-bit integer uniquely identifying the neighboring router in the Autonomous System." ::= { ospfv3VirtNbrEntry 2 }
ospfv3VirtNbrIfIndex OBJECT-TYPE
SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "The local Interface ID for the virtual link over which the neighbor can be reached." ::= { ospfv3VirtNbrEntry 3 }
ospfv3VirtNbrIfInstId OBJECT-TYPE
SYNTAX Ospfv3IfInstIdTC MAX-ACCESS read-only STATUS current DESCRIPTION "The interface instance for the virtual link over which the neighbor can be reached." ::= { ospfv3VirtNbrEntry 4 }
ospfv3VirtNbrAddressType OBJECT-TYPE
SYNTAX InetAddressType MAX-ACCESS read-only STATUS current DESCRIPTION "The address type of ospfv3VirtNbrAddress. Only IPv6 addresses without zone index are expected." ::= { ospfv3VirtNbrEntry 5 }
ospfv3VirtNbrAddress OBJECT-TYPE
SYNTAX InetAddress MAX-ACCESS read-only STATUS current DESCRIPTION "The IPv6 address advertised by this virtual neighbor. It must be a global scope address." ::= { ospfv3VirtNbrEntry 6 }
ospfv3VirtNbrOptions OBJECT-TYPE
SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "A bit mask corresponding to the neighbor's options field." REFERENCE "OSPF for IPv6, Appendix A.2, The Options Field" ::= { ospfv3VirtNbrEntry 7 }
ospfv3VirtNbrState OBJECT-TYPE
SYNTAX INTEGER { down(1), attempt(2), init(3), twoWay(4), exchangeStart(5), exchange(6), loading(7), full(8) } MAX-ACCESS read-only STATUS current DESCRIPTION "The state of the virtual neighbor relationship." ::= { ospfv3VirtNbrEntry 8 }
ospfv3VirtNbrEvents OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times this virtual link has changed its state or an error has occurred. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of ospfv3DiscontinuityTime." ::= { ospfv3VirtNbrEntry 9 }
ospfv3VirtNbrLsRetransQLen OBJECT-TYPE
SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The current length of the retransmission queue." ::= { ospfv3VirtNbrEntry 10 }
ospfv3VirtNbrHelloSuppressed OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "Indicates whether Hellos are being suppressed to the neighbor." ::= { ospfv3VirtNbrEntry 11 }
ospfv3VirtNbrIfId OBJECT-TYPE
SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "The Interface ID that the neighbor advertises in its Hello packets on this virtual link, that is, the neighbor's local Interface ID." ::= { ospfv3VirtNbrEntry 12 }
ospfv3VirtNbrRestartHelperStatus OBJECT-TYPE
SYNTAX INTEGER { notHelping(1), helping(2) } MAX-ACCESS read-only STATUS current DESCRIPTION "Indicates whether the router is acting as a graceful restart helper for the neighbor." ::= { ospfv3VirtNbrEntry 13 }
ospfv3VirtNbrRestartHelperAge OBJECT-TYPE
SYNTAX Ospfv3UpToRefreshIntervalTC UNITS "seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "Remaining time in the current OSPF graceful restart interval, if the router is acting as a restart helper for the neighbor." ::= { ospfv3VirtNbrEntry 14 }
ospfv3VirtNbrRestartHelperExitReason OBJECT-TYPE
SYNTAX INTEGER { none(1), inProgress(2), completed(3), timedOut(4), topologyChanged(5) } MAX-ACCESS read-only STATUS current DESCRIPTION "Describes the outcome of the last attempt at acting as a graceful restart helper for the neighbor. none: no restart has yet been attempted. inProgress: a restart attempt is currently underway. completed: the last restart completed successfully. timedOut: the last restart timed out. topologyChanged: the last restart was aborted due to a topology change." ::= { ospfv3VirtNbrEntry 15 } -- -- The OSPFv3 Area Aggregate Table --
ospfv3AreaAggregateTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3AreaAggregateEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Area Aggregate Table acts as an adjunct to the Area Table. It describes those address aggregates that are configured to be propagated from an area. Its purpose is to reduce the amount of information that is known beyond an area's borders. A range of IPv6 prefixes specified by a prefix / prefix length pair. Note that if ranges are configured such that one range subsumes another range, the most specific match is the preferred one." ::= { ospfv3Objects 12 }
ospfv3AreaAggregateEntry OBJECT-TYPE
SYNTAX Ospfv3AreaAggregateEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A single area aggregate entry. Information in this table is persistent, and when this object is written, the entity SHOULD save the change to non-volatile storage." REFERENCE "OSPF Version 2, Appendix C.2, Area parameters" INDEX { ospfv3AreaAggregateAreaID, ospfv3AreaAggregateAreaLsdbType, ospfv3AreaAggregatePrefixType, ospfv3AreaAggregatePrefix, ospfv3AreaAggregatePrefixLength } ::= { ospfv3AreaAggregateTable 1 }
Ospfv3AreaAggregateEntry ::= SEQUENCE {
ospfv3AreaAggregateAreaID Ospfv3AreaIdTC, ospfv3AreaAggregateAreaLsdbType INTEGER, ospfv3AreaAggregatePrefixType InetAddressType, ospfv3AreaAggregatePrefix InetAddress, ospfv3AreaAggregatePrefixLength InetAddressPrefixLength, ospfv3AreaAggregateRowStatus RowStatus, ospfv3AreaAggregateEffect INTEGER, ospfv3AreaAggregateRouteTag Unsigned32 }
ospfv3AreaAggregateAreaID OBJECT-TYPE
SYNTAX Ospfv3AreaIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The area the Address Aggregate is to be found within." REFERENCE "OSPF Version 2, Appendix C.2, Area parameters" ::= { ospfv3AreaAggregateEntry 1 }
ospfv3AreaAggregateAreaLsdbType OBJECT-TYPE
SYNTAX INTEGER { interAreaPrefixLsa(8195), -- 0x2003 nssaExternalLsa(8199) -- 0x2007 } MAX-ACCESS not-accessible STATUS current DESCRIPTION "The type of the Address Aggregate. This field specifies the Area LSDB type that this Address Aggregate applies to." REFERENCE "OSPF Version 2, Appendix A.4.1, The LSA header" ::= { ospfv3AreaAggregateEntry 2 }
ospfv3AreaAggregatePrefixType OBJECT-TYPE
SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "The prefix type of ospfv3AreaAggregatePrefix. Only IPv6 addresses are expected." ::= { ospfv3AreaAggregateEntry 3 }
ospfv3AreaAggregatePrefix OBJECT-TYPE
SYNTAX InetAddress (SIZE (0..16)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The IPv6 prefix." REFERENCE "OSPF Version 2, Appendix C.2, Area parameters" ::= { ospfv3AreaAggregateEntry 4 }
ospfv3AreaAggregatePrefixLength OBJECT-TYPE
SYNTAX InetAddressPrefixLength (3..128) UNITS "bits" MAX-ACCESS not-accessible STATUS current DESCRIPTION "The length of the prefix (in bits). A prefix can not be shorter than 3 bits." REFERENCE "OSPF Version 2, Appendix C.2, Area parameters" ::= { ospfv3AreaAggregateEntry 5 }
ospfv3AreaAggregateRowStatus OBJECT-TYPE
SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object permits management of the table by facilitating actions such as row creation, construction, and destruction. The value of this object has no effect on whether other objects in this conceptual row can be modified." ::= { ospfv3AreaAggregateEntry 6 }
ospfv3AreaAggregateEffect OBJECT-TYPE
SYNTAX INTEGER { advertiseMatching(1), doNotAdvertiseMatching(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "Prefixes subsumed by ranges will either trigger the advertisement of the indicated aggregate (advertiseMatching) or result in the prefix not being advertised at all outside the area." DEFVAL { advertiseMatching } ::= { ospfv3AreaAggregateEntry 7 }
ospfv3AreaAggregateRouteTag OBJECT-TYPE
SYNTAX Unsigned32 MAX-ACCESS read-create STATUS current DESCRIPTION "This tag is advertised only in the summarized As-External LSA when summarizing from NSSA-LSAs to AS-External-LSAs." DEFVAL { 0 } ::= { ospfv3AreaAggregateEntry 8 } -- OSPFv3 Link-Scope Link State Database, for virtual interfaces
ospfv3VirtLinkLsdbTable OBJECT-TYPE
SYNTAX SEQUENCE OF Ospfv3VirtLinkLsdbEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The OSPFv3 Process's Link-scope LSDB for virtual interfaces. The LSDB contains the Link-scope link state advertisements from virtual interfaces." ::= { ospfv3Objects 13 }
ospfv3VirtLinkLsdbEntry OBJECT-TYPE
SYNTAX Ospfv3VirtLinkLsdbEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A single Link-scope link state advertisement for a virtual interface." INDEX { ospfv3VirtLinkLsdbIfAreaId, ospfv3VirtLinkLsdbIfNeighbor, ospfv3VirtLinkLsdbType, ospfv3VirtLinkLsdbRouterId, ospfv3VirtLinkLsdbLsid } ::= { ospfv3VirtLinkLsdbTable 1 }
Ospfv3VirtLinkLsdbEntry ::= SEQUENCE {
ospfv3VirtLinkLsdbIfAreaId Ospfv3AreaIdTC, ospfv3VirtLinkLsdbIfNeighbor Ospfv3RouterIdTC, ospfv3VirtLinkLsdbType Unsigned32, ospfv3VirtLinkLsdbRouterId Ospfv3RouterIdTC, ospfv3VirtLinkLsdbLsid Ospfv3LsIdTC, ospfv3VirtLinkLsdbSequence Ospfv3LsaSequenceTC, ospfv3VirtLinkLsdbAge Ospfv3LsaAgeTC, ospfv3VirtLinkLsdbChecksum Integer32, ospfv3VirtLinkLsdbAdvertisement OCTET STRING, ospfv3VirtLinkLsdbTypeKnown TruthValue }
ospfv3VirtLinkLsdbIfAreaId OBJECT-TYPE
SYNTAX Ospfv3AreaIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The transit area that the virtual link traverses. By definition, this is not Area 0." ::= { ospfv3VirtLinkLsdbEntry 1 }
ospfv3VirtLinkLsdbIfNeighbor OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Router ID of the virtual neighbor." ::= { ospfv3VirtLinkLsdbEntry 2 }
ospfv3VirtLinkLsdbType OBJECT-TYPE
SYNTAX Unsigned32(0..'FFFFFFFF'h) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The type of the link state advertisement. Each link state type has a separate advertisement format. Link-scope LSAs unrecognized by the router are also stored in this database." ::= { ospfv3VirtLinkLsdbEntry 3 }
ospfv3VirtLinkLsdbRouterId OBJECT-TYPE
SYNTAX Ospfv3RouterIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The 32-bit number that uniquely identifies the originating router in the Autonomous System." REFERENCE "OSPF Version 2, Appendix C.1, Global parameters" ::= { ospfv3VirtLinkLsdbEntry 4 }
ospfv3VirtLinkLsdbLsid OBJECT-TYPE
SYNTAX Ospfv3LsIdTC MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Link State ID is an LS type-specific field containing a unique identifier; it identifies the piece of the routing domain that is being described by the advertisement. In contrast to OSPFv2, the LSID has no addressing semantics." ::= { ospfv3VirtLinkLsdbEntry 5 }
-- Note that the OSPF sequence number is a 32-bit signed -- integer. It starts with the value '80000001'h
-- or -'7FFFFFFF'h, and increments until '7FFFFFFF'h.
-- Thus, a typical sequence number will be very negative.ospfv3VirtLinkLsdbSequence OBJECT-TYPE
SYNTAX Ospfv3LsaSequenceTC MAX-ACCESS read-only STATUS current DESCRIPTION "The sequence number field is a signed 32-bit integer. It is used to detect old and duplicate link state advertisements. The space of sequence numbers is linearly ordered. The larger the sequence number, the more recent the advertisement." REFERENCE "OSPF Version 2, Section 12.1.6, LS sequence number" ::= { ospfv3VirtLinkLsdbEntry 6 }
ospfv3VirtLinkLsdbAge OBJECT-TYPE
SYNTAX Ospfv3LsaAgeTC UNITS "seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "This field is the age of the link state advertisement in seconds. The high-order bit of the LS age field is considered the DoNotAge bit for support of on-demand circuits." REFERENCE "OSPF Version 2, Section 12.1.1, LS age; Extending OSPF to Support Demand Circuits, Section 2.2, The LS age field." ::= { ospfv3VirtLinkLsdbEntry 7 }
ospfv3VirtLinkLsdbChecksum OBJECT-TYPE
SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "This field is the checksum of the complete contents of the advertisement, excepting the age field. The age field is excepted so that an advertisement's age can be incremented without updating the checksum. The checksum used is the same that is used for ISO connectionless datagrams; it is commonly referred to as the Fletcher checksum." REFERENCE "OSPF Version 2, Section 12.1.7, LS checksum" ::= { ospfv3VirtLinkLsdbEntry 8 }
ospfv3VirtLinkLsdbAdvertisement OBJECT-TYPE
SYNTAX OCTET STRING (SIZE (1..65535)) MAX-ACCESS read-only STATUS current DESCRIPTION "The entire link state advertisement, including its header." ::= { ospfv3VirtLinkLsdbEntry 9 }
ospfv3VirtLinkLsdbTypeKnown OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "The value true (1) indicates that the LSA type is recognized by this router." ::= { ospfv3VirtLinkLsdbEntry 10 } -- The Ospfv3 Notification Table
-- The Ospfv3 Notification Table records fields that are -- required for notifications.
ospfv3NotificationEntry OBJECT IDENTIFIER
::= { ospfv3Objects 14 }
ospfv3ConfigErrorType OBJECT-TYPE
SYNTAX INTEGER { badVersion(1), areaMismatch(2), unknownNbmaNbr(3), -- Router is DR eligible unknownVirtualNbr(4), helloIntervalMismatch(5), deadIntervalMismatch(6), optionMismatch(7), mtuMismatch(8), duplicateRouterId(9), noError(10) } MAX-ACCESS accessible-for-notify STATUS current DESCRIPTION "Potential types of configuration conflicts. Used by the ospfv3ConfigError and ospfv3ConfigVirtError notifications." ::= { ospfv3NotificationEntry 1 }
ospfv3PacketType OBJECT-TYPE
SYNTAX INTEGER { hello(1), dbDescript(2), lsReq(3), lsUpdate(4), lsAck(5), nullPacket(6) } MAX-ACCESS accessible-for-notify STATUS current DESCRIPTION "OSPFv3 packet types." ::= { ospfv3NotificationEntry 2 } ospfv3PacketSrc OBJECT-TYPE SYNTAX InetAddressIPv6 MAX-ACCESS accessible-for-notify STATUS current DESCRIPTION "The IPv6 address of an inbound packet that cannot be identified by a neighbor instance. Only IPv6 addresses without zone index are expected." ::= { ospfv3NotificationEntry 3 } -- Notification Definitions
-- The notifications need to be throttled so as to not overwhelm the -- management agent in case of rapid changes to the OSPFv3 module.
ospfv3VirtIfStateChange NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3VirtIfState -- The new state } STATUS current DESCRIPTION "An ospfv3VirtIfStateChange notification signifies that there has been a change in the state of an OSPFv3 virtual interface. This notification should be generated when the interface state regresses (e.g., goes from Point-to-Point to Down) or progresses to a terminal state (i.e., Point-to-Point)." ::= { ospfv3Notifications 1 }
ospfv3NbrStateChange NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3NbrState -- The new state } STATUS current DESCRIPTION "An ospfv3NbrStateChange notification signifies that there has been a change in the state of a non-virtual OSPFv3 neighbor. This notification should be generated when the neighbor state regresses (e.g., goes from Attempt or Full to 1-Way or Down) or progresses to a terminal state (e.g., 2-Way or Full). When a neighbor transitions from or to Full on non-broadcast multi-access and broadcast networks, the notification should be generated by the Designated Router. A Designated Router transitioning to Down will be noted by ospfIfStateChange." ::= { ospfv3Notifications 2 }
ospfv3VirtNbrStateChange NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3VirtNbrState -- The new state } STATUS current DESCRIPTION "An ospfv3VirtNbrStateChange notification signifies that there has been a change in the state of an OSPFv3 virtual neighbor. This notification should be generated when the neighbor state regresses (e.g., goes from Attempt or Full to 1-Way or Down) or progresses to a terminal state (e.g., Full)." ::= { ospfv3Notifications 3 }
ospfv3IfConfigError NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3IfState, -- State of the interface ospfv3PacketSrc, -- IPv6 address of source ospfv3ConfigErrorType, -- Type of error ospfv3PacketType -- Type of packet } STATUS current DESCRIPTION "An ospfv3IfConfigError notification signifies that a packet has been received on a non-virtual interface from a router whose configuration parameters conflict with this router's configuration parameters. Note that the event optionMismatch should cause a notification only if it prevents an adjacency from forming." ::= { ospfv3Notifications 4 }
ospfv3VirtIfConfigError NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3VirtIfState, -- State of the interface ospfv3ConfigErrorType, -- Type of error ospfv3PacketType } STATUS current DESCRIPTION "An ospfv3VirtIfConfigError notification signifies that a packet has been received on a virtual interface from a router whose configuration parameters conflict with this router's configuration parameters. Note that the event optionMismatch should cause a notification only if it prevents an adjacency from forming." ::= { ospfv3Notifications 5 }
ospfv3IfRxBadPacket NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3IfState, -- State of the interface ospfv3PacketSrc, -- The source IPv6 address ospfv3PacketType -- Type of packet } STATUS current DESCRIPTION "An ospfv3IfRxBadPacket notification signifies that an OSPFv3 packet that cannot be parsed has been received on a non-virtual interface." ::= { ospfv3Notifications 6 }
ospfv3VirtIfRxBadPacket NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3VirtIfState, -- State of the interface ospfv3PacketType -- Type of packet } STATUS current DESCRIPTION "An ospfv3VirtIfRxBadPacket notification signifies that an OSPFv3 packet that cannot be parsed has been received on a virtual interface." ::= { ospfv3Notifications 7 }
ospfv3LsdbOverflow NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3ExtAreaLsdbLimit -- Limit on External LSAs } STATUS current DESCRIPTION "An ospfv3LsdbOverflow notification signifies that the number of LSAs in the router's link state database has exceeded ospfv3ExtAreaLsdbLimit." ::= { ospfv3Notifications 8 }
ospfv3LsdbApproachingOverflow NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3ExtAreaLsdbLimit } STATUS current DESCRIPTION "An ospfv3LsdbApproachingOverflow notification signifies that the number of LSAs in the router's link state database has exceeded ninety percent of ospfv3ExtAreaLsdbLimit." ::= { ospfv3Notifications 9 }
ospfv3IfStateChange NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3IfState -- The new state } STATUS current DESCRIPTION "An ospfv3IfStateChange notification signifies that there has been a change in the state of a non-virtual OSPFv3 interface. This notification should be generated when the interface state regresses (e.g., goes from DR to Down) or progresses to a terminal state (i.e., Point-to-Point, DR Other, DR, or Backup)." ::= { ospfv3Notifications 10 }
ospfv3NssaTranslatorStatusChange NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3AreaNssaTranslatorState -- new state } STATUS current DESCRIPTION "An ospfv3NssaTranslatorStatusChange notification indicates that there has been a change in the router's ability to translate OSPFv3 NSSA LSAs into OSPFv3 External LSAs. This notification should be generated when the Translator Status transitions from or to any defined status on a per-area basis." ::= { ospfv3Notifications 11 }
ospfv3RestartStatusChange NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3RestartStatus, -- new status ospfv3RestartInterval, ospfv3RestartExitReason } STATUS current DESCRIPTION "An ospfv3RestartStatusChange notification signifies that there has been a change in the graceful restart state for the router. This notification should be generated when the router restart status changes." ::= { ospfv3Notifications 12 }
ospfv3NbrRestartHelperStatusChange NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3NbrRestartHelperStatus, -- new status ospfv3NbrRestartHelperAge, ospfv3NbrRestartHelperExitReason } STATUS current DESCRIPTION "An ospfv3NbrRestartHelperStatusChange notification signifies that there has been a change in the graceful restart helper state for the neighbor. This notification should be generated when the neighbor restart helper status transitions for a neighbor." ::= { ospfv3Notifications 13 }
ospfv3VirtNbrRestartHelperStatusChange NOTIFICATION-TYPE
OBJECTS { ospfv3RouterId, -- The originator of the notification ospfv3VirtNbrRestartHelperStatus, -- new status ospfv3VirtNbrRestartHelperAge, ospfv3VirtNbrRestartHelperExitReason } STATUS current DESCRIPTION "An ospfv3VirtNbrRestartHelperStatusChange notification signifies that there has been a change in the graceful restart helper state for the virtual neighbor. This notification should be generated when the virtual neighbor restart helper status transitions for a virtual neighbor." ::= { ospfv3Notifications 14 } -- Conformance Information ospfv3Groups OBJECT IDENTIFIER ::= { ospfv3Conformance 1 } ospfv3Compliances OBJECT IDENTIFIER ::= { ospfv3Conformance 2 } -- Compliance Statements
ospfv3FullCompliance MODULE-COMPLIANCE
STATUS current DESCRIPTION "The compliance statement" MODULE -- this module MANDATORY-GROUPS { ospfv3BasicGroup, ospfv3AreaGroup, ospfv3IfGroup, ospfv3VirtIfGroup, ospfv3NbrGroup, ospfv3CfgNbrGroup, ospfv3VirtNbrGroup, ospfv3AreaAggregateGroup } GROUP ospfv3AsLsdbGroup DESCRIPTION "This group is required for OSPFv3 systems that display their AS-scope link state database." GROUP ospfv3AreaLsdbGroup DESCRIPTION "This group is required for OSPFv3 systems that display their Area-scope link state database." GROUP ospfv3LinkLsdbGroup DESCRIPTION "This group is required for OSPFv3 systems that display their Link-scope link state database for non-virtual interfaces." GROUP ospfv3VirtLinkLsdbGroup DESCRIPTION "This group is required for OSPFv3 systems that display their Link-scope link state database for virtual interfaces." GROUP ospfv3HostGroup DESCRIPTION "This group is required for OSPFv3 systems that support attached hosts." GROUP ospfv3NotificationObjectGroup DESCRIPTION "This group is required for OSPFv3 systems that support OSPFv3 notifications." GROUP ospfv3NotificationGroup DESCRIPTION "This group is required for OSPFv3 systems that support OSPFv3 notifications." OBJECT ospfv3NbrAddressType SYNTAX InetAddressType { ipv6(2) } DESCRIPTION "An implementation is only required to support IPv6 address without zone index." OBJECT ospfv3NbrAddress SYNTAX InetAddress (SIZE (16)) DESCRIPTION "An implementation is only required to support IPv6 address without zone index." OBJECT ospfv3VirtNbrAddressType SYNTAX InetAddressType { ipv6(2) } DESCRIPTION "An implementation is only required to support IPv6 address without zone index." OBJECT ospfv3VirtNbrAddress SYNTAX InetAddress (SIZE (16)) DESCRIPTION "An implementation is only required to support IPv6 address without zone index." ::= { ospfv3Compliances 1 }
-
ospfv3ReadOnlyCompliance MODULE-COMPLIANCE
STATUS current DESCRIPTION "When this MIB module is implemented without support for read-create (i.e., in read-only mode), the implementation can claim read-only compliance. Such a device can then be monitored, but cannot be configured with this MIB."
-
-
MODULE -- this module
-
MANDATORY-GROUPS {
-
-
ospfv3BasicGroup,
-
-
ospfv3AreaGroup, ospfv3IfGroup, ospfv3VirtIfGroup, ospfv3NbrGroup, ospfv3CfgNbrGroup, ospfv3VirtNbrGroup, ospfv3AreaAggregateGroup } GROUP ospfv3AsLsdbGroup DESCRIPTION "This group is required for OSPFv3 systems that display their AS-scope link state database." GROUP ospfv3AreaLsdbGroup DESCRIPTION "This group is required for OSPFv3 systems that display their Area-scope link state database." GROUP ospfv3LinkLsdbGroup DESCRIPTION "This group is required for OSPFv3 systems that display their Link-scope link state database for non-virtual interfaces." GROUP ospfv3VirtLinkLsdbGroup DESCRIPTION "This group is required for OSPFv3 systems that display their Link-scope link state database for virtual interfaces." GROUP ospfv3HostGroup DESCRIPTION "This group is required for OSPFv3 systems that support attached hosts." GROUP ospfv3NotificationObjectGroup DESCRIPTION "This group is required for OSPFv3 systems that support OSPFv3 notifications." GROUP ospfv3NotificationGroup DESCRIPTION "This group is required for OSPFv3 systems that support OSPFv3 notifications."
-
-
OBJECT ospfv3RouterId
MIN-ACCESS read-onlyDESCRIPTION
-
"Write access is not required."
-
OBJECT ospfv3AdminStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3ExtAreaLsdbLimit MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3ExitOverflowInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3DemandExtensions MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3ReferenceBandwidth MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3RestartSupport MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3RestartInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3RestartStrictLsaChecking MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3NotificationEnable MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3StubRouterAdvertisement MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaImportAsExtern MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaSummary MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaRowStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaStubMetric MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaNssaTranslatorRole MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaNssaTranslatorStabInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaStubMetricType MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaTEEnabled MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3HostMetric MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3HostRowStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3HostAreaID MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfAreaId MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfType MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfAdminStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfRtrPriority MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfTransitDelay MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfRetransInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfHelloInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfRtrDeadInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfPollInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfRowStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfDemand MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfMetricValue MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfDemandNbrProbe MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfDemandNbrProbeRetransLimit MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfDemandNbrProbeInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfTEDisabled MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3IfLinkLSASuppression MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3VirtIfTransitDelay MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3VirtIfRetransInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3VirtIfHelloInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3VirtIfRtrDeadInterval MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3VirtIfRowStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3CfgNbrPriority MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3CfgNbrRowStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaAggregateRowStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaAggregateEffect MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT ospfv3AreaAggregateRouteTag MIN-ACCESS read-only DESCRIPTION "Write access is not required." ::= { ospfv3Compliances 2 }
-- units of conformance
ospfv3BasicGroup OBJECT-GROUP
OBJECTS { ospfv3RouterId, ospfv3AdminStatus, ospfv3VersionNumber, ospfv3AreaBdrRtrStatus, ospfv3ASBdrRtrStatus, ospfv3AsScopeLsaCount, ospfv3AsScopeLsaCksumSum, ospfv3OriginateNewLsas, ospfv3RxNewLsas, ospfv3ExtLsaCount, ospfv3ExtAreaLsdbLimit, ospfv3ExitOverflowInterval, ospfv3DemandExtensions, ospfv3ReferenceBandwidth, ospfv3RestartSupport, ospfv3RestartInterval, ospfv3RestartStrictLsaChecking, ospfv3RestartStatus, ospfv3RestartAge, ospfv3RestartExitReason, ospfv3NotificationEnable, ospfv3StubRouterSupport, ospfv3StubRouterAdvertisement, ospfv3DiscontinuityTime, ospfv3RestartTime } STATUS current DESCRIPTION "These objects are used for managing/monitoring OSPFv3 global parameters." ::= { ospfv3Groups 1 }
ospfv3AreaGroup OBJECT-GROUP
OBJECTS { ospfv3AreaImportAsExtern, ospfv3AreaSpfRuns, ospfv3AreaBdrRtrCount, ospfv3AreaAsBdrRtrCount, ospfv3AreaScopeLsaCount, ospfv3AreaScopeLsaCksumSum, ospfv3AreaSummary, ospfv3AreaRowStatus, ospfv3AreaStubMetric, ospfv3AreaNssaTranslatorRole, ospfv3AreaNssaTranslatorState, ospfv3AreaNssaTranslatorStabInterval, ospfv3AreaNssaTranslatorEvents, ospfv3AreaStubMetricType, ospfv3AreaTEEnabled } STATUS current DESCRIPTION "These objects are used for OSPFv3 systems supporting areas." ::= { ospfv3Groups 2 }
ospfv3AsLsdbGroup OBJECT-GROUP
OBJECTS { ospfv3AsLsdbSequence, ospfv3AsLsdbAge, ospfv3AsLsdbChecksum, ospfv3AsLsdbAdvertisement, ospfv3AsLsdbTypeKnown } STATUS current DESCRIPTION "These objects are used for OSPFv3 systems that display their AS-scope link state database." ::= { ospfv3Groups 3 }
ospfv3AreaLsdbGroup OBJECT-GROUP
OBJECTS { ospfv3AreaLsdbSequence, ospfv3AreaLsdbAge, ospfv3AreaLsdbChecksum, ospfv3AreaLsdbAdvertisement, ospfv3AreaLsdbTypeKnown } STATUS current DESCRIPTION "These objects are used for OSPFv3 systems that display their Area-scope link state database." ::= { ospfv3Groups 4 }
ospfv3LinkLsdbGroup OBJECT-GROUP
OBJECTS { ospfv3LinkLsdbSequence, ospfv3LinkLsdbAge, ospfv3LinkLsdbChecksum, ospfv3LinkLsdbAdvertisement, ospfv3LinkLsdbTypeKnown } STATUS current DESCRIPTION "These objects are used for OSPFv3 systems that display their Link-scope link state database for non-virtual interfaces." ::= { ospfv3Groups 5 }
ospfv3HostGroup OBJECT-GROUP
OBJECTS { ospfv3HostMetric, ospfv3HostRowStatus, ospfv3HostAreaID } STATUS current DESCRIPTION "These objects are used for OSPFv3 systems that support attached hosts." ::= { ospfv3Groups 6 }
ospfv3IfGroup OBJECT-GROUP
OBJECTS { ospfv3IfAreaId, ospfv3IfType, ospfv3IfAdminStatus, ospfv3IfRtrPriority, ospfv3IfTransitDelay, ospfv3IfRetransInterval, ospfv3IfHelloInterval, ospfv3IfRtrDeadInterval, ospfv3IfPollInterval, ospfv3IfState, ospfv3IfDesignatedRouter, ospfv3IfBackupDesignatedRouter, ospfv3IfEvents, ospfv3IfRowStatus, ospfv3IfDemand, ospfv3IfMetricValue, ospfv3IfLinkScopeLsaCount, ospfv3IfLinkLsaCksumSum, ospfv3IfDemandNbrProbe, ospfv3IfDemandNbrProbeRetransLimit, ospfv3IfDemandNbrProbeInterval, ospfv3IfTEDisabled, ospfv3IfLinkLSASuppression } STATUS current DESCRIPTION "These interface objects are used for managing/monitoring OSPFv3 interfaces." ::= { ospfv3Groups 7 }
ospfv3VirtIfGroup OBJECT-GROUP
OBJECTS { ospfv3VirtIfIndex, ospfv3VirtIfInstId, ospfv3VirtIfTransitDelay, ospfv3VirtIfRetransInterval, ospfv3VirtIfHelloInterval, ospfv3VirtIfRtrDeadInterval, ospfv3VirtIfState, ospfv3VirtIfEvents, ospfv3VirtIfRowStatus, ospfv3VirtIfLinkScopeLsaCount, ospfv3VirtIfLinkLsaCksumSum } STATUS current DESCRIPTION "These virtual interface objects are used for managing/monitoring OSPFv3 virtual interfaces." ::= { ospfv3Groups 8 }
ospfv3NbrGroup OBJECT-GROUP
OBJECTS { ospfv3NbrAddressType, ospfv3NbrAddress, ospfv3NbrOptions, ospfv3NbrPriority, ospfv3NbrState, ospfv3NbrEvents, ospfv3NbrLsRetransQLen, ospfv3NbrHelloSuppressed, ospfv3NbrIfId, ospfv3NbrRestartHelperStatus, ospfv3NbrRestartHelperAge, ospfv3NbrRestartHelperExitReason } STATUS current DESCRIPTION "These neighbor objects are used for managing/monitoring OSPFv3 neighbors." ::= { ospfv3Groups 9 }
ospfv3CfgNbrGroup OBJECT-GROUP
OBJECTS { ospfv3CfgNbrPriority, ospfv3CfgNbrRowStatus } STATUS current DESCRIPTION "These configured neighbor objects are used for managing/monitoring OSPFv3-configured neighbors." ::= { ospfv3Groups 10 }
ospfv3VirtNbrGroup OBJECT-GROUP
OBJECTS { ospfv3VirtNbrIfIndex, ospfv3VirtNbrIfInstId, ospfv3VirtNbrAddressType, ospfv3VirtNbrAddress, ospfv3VirtNbrOptions, ospfv3VirtNbrState, ospfv3VirtNbrEvents, ospfv3VirtNbrLsRetransQLen, ospfv3VirtNbrHelloSuppressed, ospfv3VirtNbrIfId, ospfv3VirtNbrRestartHelperStatus, ospfv3VirtNbrRestartHelperAge, ospfv3VirtNbrRestartHelperExitReason } STATUS current DESCRIPTION "These virtual neighbor objects are used for managing/monitoring OSPFv3 virtual neighbors." ::= { ospfv3Groups 11 }
ospfv3AreaAggregateGroup OBJECT-GROUP
OBJECTS { ospfv3AreaAggregateRowStatus, ospfv3AreaAggregateEffect, ospfv3AreaAggregateRouteTag } STATUS current DESCRIPTION "These area aggregate objects are required for aggregating OSPFv3 prefixes for summarization across areas." ::= { ospfv3Groups 12 }
ospfv3VirtLinkLsdbGroup OBJECT-GROUP
OBJECTS { ospfv3VirtLinkLsdbSequence, ospfv3VirtLinkLsdbAge, ospfv3VirtLinkLsdbChecksum, ospfv3VirtLinkLsdbAdvertisement, ospfv3VirtLinkLsdbTypeKnown } STATUS current DESCRIPTION "These objects are used for OSPFv3 systems that display their Link-scope link state database for virtual interfaces." ::= { ospfv3Groups 13 }
ospfv3NotificationObjectGroup OBJECT-GROUP
OBJECTS { ospfv3ConfigErrorType, ospfv3PacketType, ospfv3PacketSrc } STATUS current DESCRIPTION "These objects are used to record notification parameters." ::= { ospfv3Groups 14 }
ospfv3NotificationGroup NOTIFICATION-GROUP
NOTIFICATIONS { ospfv3VirtIfStateChange, ospfv3NbrStateChange, ospfv3VirtNbrStateChange, ospfv3IfConfigError, ospfv3VirtIfConfigError, ospfv3IfRxBadPacket, ospfv3VirtIfRxBadPacket, ospfv3LsdbOverflow, ospfv3LsdbApproachingOverflow, ospfv3IfStateChange, ospfv3NssaTranslatorStatusChange, ospfv3RestartStatusChange, ospfv3NbrRestartHelperStatusChange, ospfv3VirtNbrRestartHelperStatusChange } STATUS current DESCRIPTION "This group is used for OSPFv3 notifications." ::= { ospfv3Groups 15 } END
6. Security Considerations
-
There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. Improper manipulation of the objects represented by this MIB module may result in disruption of network connectivity by administratively disabling the entire OSPFv3 entity or individual interfaces, by deleting configured neighbors, by reducing the limit on External LSAs, by changing ASBR status, by manipulating route aggregation, by manipulating interface and route metrics, by changing Hello interval or dead interval, or by changing interface type. Remote monitoring can be defeated by disabling of SNMP notifications. Performance can be impacted by increasing the limit on External LSAs or changing DR/BDR (Designated Router / Backup Designated Router) priority.
Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. Unauthorized access to readable objects in this MIB module allows the discovery of the network topology and operating parameters, which can be used to target further attacks on the network or to gain a competitive business advantage.
SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.
It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).
Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.
7. IANA Considerations
-
The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER values recorded in the SMI Numbers registry:
Descriptor OBJECT IDENTIFIER value ---------- ----------------------- ospfv3MIB { mib-2 191 }
8. Acknowledgements
-
This document is based on the MIB for OSPF version 2 [RFC4750]. The editors would like to thank Toshiaki Takada, Ramachandran Radhakrishnan, Harikrishna Golapalli, Mahesh Kurapati, Acee Lindem, Keith McCloghrie, Manish Gupta, Nic Neate, Vanitha N., Vivek Dubey, Ramana Koppula, Boris Benenson, and Hong Zhang for their constructive comments. Special thanks to Joan Cucchiara for her thorough review as the MIB Doctor.
9. References
9.1. Normative References
-
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999. [RFC2579] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999. [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999. [RFC5340] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF for IPv6", RFC 5340, July 2008. [RFC4293] Routhier, S., Ed., "Management Information Base for the Internet Protocol (IP)", RFC 4293, April 2006. [RFC4750] Joyal, D., Ed., Galecki, P., Ed., Giacalone, S., Ed., Coltun, R., and F. Baker, "OSPF Version 2 Management Information Base", RFC 4750, December 2006.
9.2. Informative References
-
[RFC1224] Steinberg, L., "Techniques for managing asynchronously generated alerts", RFC 1224, May 1991. [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998. [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet- Standard Management Framework", RFC 3410, December 2002. [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks", STD 62, RFC 3411, December 2002. [RFC3413] Levi, D., Meyer, P., and B. Stewart, "Simple Network Management Protocol (SNMP) Applications", STD 62, RFC 3413, December 2002.
Contributors' Addresses
-
Jacek Kwiatkowski Intel Technology Poland ul. Slowackiego 173 80-298 Gdansk, Poland EMail: jacek.kwiatkowski@intel.com Sebastian Zwolinski Intel Technology Poland ul. Slowackiego 173 80-298 Gdansk, Poland EMail: sebastian.zwolinski@intel.com
Editors' Addresses
-
Dan Joyal
Nortel
600 Technology Park Drive
Billerica, MA 01821
EMail: djoyal@nortel.comVishwas Manral IP Infusion Almora, Uttarakhand India EMail: vishwas@ipinfusion.com