M. Belinchon
Ericsson
September 2004
Stream Control Transmission Protocol (SCTP)
Management Information Base (MIB)
Status of this Memo
-
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
-
Copyright © The Internet Society (2004).
Abstract
-
The Stream Control Transmission Protocol (SCTP) is a reliable transport protocol operating on top of a connectionless packet network such as IP. It is designed to transport public switched telephone network (PSTN) signaling messages over the connectionless packet network, but is capable of broader applications.
This memo defines the Management Information Base (MIB) module which describes the minimum set of objects needed to manage the implementation of the SCTP.
Table of Contents
-
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Abbreviations. . . . . . . . . . . . . . . . . . . . . . 2 2. The Internet-Standard Management Framework . . . . . . . . . . 3 3. MIB Structure. . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1. SCTP Objects . . . . . . . . . . . . . . . . . . . . . . 4 3.1.1. SCTP Statistics. . . . . . . . . . . . . . . . . 4 3.1.2. SCTP Parameters. . . . . . . . . . . . . . . . . 5 3.1.3. MIB Tables . . . . . . . . . . . . . . . . . . . 5 3.1.3.1. Association Table. . . . . . . . . . . 5 3.1.3.2. Reverse Lookup Table . . . . . . . . . 8 3.2. Conformance. . . . . . . . . . . . . . . . . . . . . . . 9 4. Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . 9 5. Compiling Notes. . . . . . . . . . . . . . . . . . . . . . . . 42 6. References . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.1. Normative References . . . . . . . . . . . . . . . . . . 42 6.2. Informative References . . . . . . . . . . . . . . . . . 43 7. Security Considerations. . . . . . . . . . . . . . . . . . . . 44 8. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . 45 9. Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 45 10. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 46
1. Introduction
-
This memo defines the Management Information Base (MIB) module which describes managed objects for implementations of the SCTP.
The document starts with a brief description of the SNMP framework and continues with the MIB explanation and security consideration sections among others.
The managed objects in this MIB module are based on [RFC2012] update: "Management Information Base for the Transmission Control Protocol (TCP)" referred as [TCPMIB] (work in progress), and RFC 3291 "Textual Conventions for Internet Network Addresses" [RFC3291].
Terms related to the SCTP architecture are explained in [RFC2960]. Other specific abbreviations are listed below.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
1.1. Abbreviations
-
DNS - Domain Name System IANA - Internet Assigned Numbers Authority IETF - Internet Engineering Task Force IP - Internet Protocol MIB - Management Information Base RFC - Request For Comments RTO - Retransmission Time Out SCTP - Stream Control Transmission Protocol SMI - Structure of Management Information SNMP - Simple Network Management Protocol TCB - Transmission Control Block TCP - Transmission Control Protocol
2. The Internet-Standard Management Framework
-
For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].
Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].
3. MIB Structure
-
This chapter explains the main objects this MIB defines. A detailed view of the MIB structure with the OID values is below.
MIB-2 {1 3 6 1 2 1} +--(104)sctpMIB | +--(1) sctpObjects | | | +--(1) sctpStats | | | | | +-- <scalars> | | | +--(2)sctpParameters | | | | | +-- <scalars> | | | +--(3) sctpAssocTable | | | +--(4) sctpAssocLocalAddrTable | | | +--(5) sctpAssocRemAddrTable | | | +--(6) sctpLookupLocalPortTable | | | +--(7) sctpLookupRemPortTable | | | +--(8) sctpLookupRemHostNameTable | | | +--(9) sctpLookupRemPrimIPAddrTable | | | +--(10) sctpLookupRemIPAddrTable | | +--(2)sctpMibConformance | +--(1) sctpMibCompliances | | | +--(1) sctpMibCompliance | +--(2) sctpMibGroups | +--(1) sctpLayerParamsGroup | +--(2) sctpStatsGroup | +--(3) sctpPerAssocParamsGroup | +--(4) sctpInverseGroup
The main groups are explained further in the MIB definition.
3.1. SCTP Objects
-
This branch contains the SCTP statistics and general parameters (both of them scalars) and the SCTP MIB tables.
3.1.1. SCTP Statistics
-
The SCTP MIB includes both Counter32s and Counter64s to deal with statistics. Counter64s are used for those counters, which are likely to wrap around in less than one hour, according to [RFC2863].
In addition Gauge32 is also used.
3.1.1.1. State-Related Statistics
-
These statistics are based on the TCP model, but adapted to the SCTP states. They store the number of successful association attempts, how many associations have been initiated by the local or the remote SCTP layer, and the number of associations terminated in a graceful (by means of SHUTDOWN procedure) or ungraceful way (by means of CLOSE procedure).
3.1.1.2. Statistics for traffic Measurements
-
This set of objects specifies statistics related to the whole SCTP layer. There are, e.g., statistics related to both SCTP packets and SCTP chunks.
Statistics related to a specific association, or local/remote IP addresses are defined inside their associated table.
3.1.2. SCTP Parameters
-
This section of the MIB contains the general variables for the SCTP protocol. Maximum, minimum, initial and default values are listed here.
SCTP RTO mechanism definition is based on the TCP MIB [TCPMIB]. In SCTP, only options 'other' and 'vanj' are valid since SCTP defines Van Jacobson's algorithm (vanj) as the one to be used to calculate RTO. 'Other' is left for future use.
3.1.3. MIB Tables
-
There are several tables included in the SCTP MIB. The first group deals with the SCTP association variables and is composed of a main and two extended tables. The second group is a bunch of tables used to perform reverse lookups.
It is NOT possible to create rows in any table (sctpAssocTable, sctpAssocLocalAddrTable, sctpRemAddrTable and Reverse Lookup tables) using SNMP.
It is NOT possible to delete rows in any table using SNMP except in sctpAssocTable under the particular conditions explained below.
3.1.3.1. Association Table
-
The sctpAssocTable is the main MIB table, where all the association related information is stored on a per association basis. It is structured according to expanded tables. The main table is called sctpAssocTable and is indexed by sctpAssocId (the association identification). This is a value that uniquely identifies an association. The MIB does not restrict what value must be written here, however it must be unique within the table.
The sctpAssoc index is also shared by two more tables:
-
- sctpAssocLocalAddrTable: to store the local IP address(es). - sctpAssocRemAddrTable: to store the remote addresses and the
-
per-remote-address related information.
-
Entries in the sctpAssocTable are created when trying to establish the association, i.e., when sending the COOKIE-ECHO message (originating side) or the COOKIE-ACK message (server side). At this point, i.e., at established state, all entry fields are filled in with valid values.
Note: The following representation is a conceptual mode of describing the relationship between the tables in this MIB. Note that the real relationship of the tables is by sharing an index, so tables are not truly within tables. Every entry is explained when defining the corresponding objects in the MIB.
mib-2 {1 3 6 1 2 1} +--(104)sctpMIB | +--(1) sctpObjects | | . . . . | +--(3) sctpAssocTable | | | +--(1) sctpAssocId (index) | | | +--(2) sctpAssocRemHostName | | | +--(3) sctpAssocLocalPort | | | +--(4) sctpAssocRemPort | | | +--(5) sctpAssocRemPrimAddrType | | | +--(6) sctpAssocRemPrimAddr | | | +--(7) sctpAssocHeartBeatInterval | | | +--(8) sctpAssocState | | | +--(9) sctpAssocInStreams | | | +--(10) sctpAssocOutStreams | | | +--(11) sctpAssocMaxRetr | | | +--(12) sctpAssocPrimProcess | | | +--(13) sctpAssocT1expireds | | | +--(14) sctpAssocT2expireds | | | +--(15) sctpAssocRtxChunks | | | +--(16) sctpAssocStartTime | | | +--(17) sctpAssocDiscontinuityTime | | +--(4) sctpAssocLocalAddrTable | | | |--(-) sctpAssocId (shared index) | | | +--(1) sctpAssocLocalAddrType(index) | | | +--(2) sctpAssocLocalAddr (index) | | | +--(3) sctpAssocLocalAddrStartTime | | +--(5) sctpAssocRemAddrTable | | | |--(-) sctpAssocId (shared index) | | | +--(1) sctpAssocRemAddrType (index) . | . +--(2) sctpAssocRemAddr (index) . | +--(3) sctpAssocRemAddrActive | +--(4) sctpAssocRemAddrHBActive | +--(5) sctpAssocRemAddrRTO | +--(6) sctpAssocRemAddrMaxPathRtx | +--(7) sctpAssocRemAddrRtx | +--(8) sctpAssocRemAddrStartTime
Both sctpAssocLocalAddrTable and sctpAssocRemAddrTable are indexed by addresses. 'Addr' and 'AddrType' use the syntax InetAddress and InetAddressType defined in the Textual Conventions for Internet Network Address (RFC3291). The InetAddressType TC has codepoints for unknown, IPv4, IPv6, non-global IPv4, non-global IPv6, and DNS addresses, but only the IPv4 and IPv6 address types are required to be supported by implementations of this MIB module. Implementations that connect multiple zones are expected to support the non-global IPv4 and non-global IPv6 address types as well.
Note that DNS addresses are not used in this MIB module. They are always resolved to the on-the-wire form prior to connection setup, and the on-the-wire form is what appears in the MIB objects.
The sctpAssocLocalAddrTable table will have as many entries as local IP addresses have been defined for the association. The sctpAssocRemAddrTable table will contain as many entries as remote IP addresses are known to reach the peer. For the multihoming concept see reference RFC2960.
To keep the name of the remote peer (when provided by the peer at initialization time), an entry has been created in the sctpAssocTable called sctpAssocRemHostName. When no DNS name is provided by the remote endpoint, this value will be NULL (zero-length string). Otherwise, the received DNS name will be stored here.
If it is necessary to abort an existing association, the value deleteTCB(9) must be written in the variable sctpAssocState. That is the only way to delete rows in any of the mentioned tables.
3.1.3.2. Reverse Lookup Table
-
There are five reverse lookup tables to help management applications efficiently access conceptual rows in other tables. These tables allow management applications to avoid expensive tree walks through large numbers of associations.
All of these tables are optional. If these tables are implemented, an entry in them must be created after the entry in the main table (sctpAssocTable) associated with it has been created. This ensures that the field indexing the lookup table exists.
The defined reverse lookup tables allow for performing a lookup using the following variables:
- Local Port: It allows a management application to find all the associations that use a specific local port - Remote Port: It allows a management application to find all the associations that use a specific remote port - Remote Host Name: It allows a management application to find all the associations with a specific host name. - Remote Primary IP Address: It allows a management application to find all the associations that use a specific remote IP address as primary. - Remote IP address: a management application to find all the associations that use a specific remote IP address.
As an example the picture below shows the table to look up by local port.
MIB-2 {1 3 6 1 2 1} +--(104)sctpMIB | +--(1) sctpObjects | | . . . . | | | +--(6) sctpLookupLocalPortTable | | | . . +--(-) sctpAssocLocalPort (shared index) . . | +--(-) sctpAssocId (shared index) | +--(1) sctpLookupLocalPortStartTime
It is not possible for the operator to either create or delete rows in these tables. The rows in this table will dynamically appear and be removed as the corresponding entries in sctpAssocTable are.
3.2. Conformance
-
The conformance section recommends all the inverse lookup tables in this MIB as optional. General layer and per association parameters and statistics are considered mandatory.
IP addresses use the global IPv4 and global IPv6 address formats. Unknown value and DNS name formats are not used. Names, if present, are stored in the sctpRemoteHostName variable.
4. Definitions
-
SCTP-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, Integer32, Unsigned32, Gauge32, Counter32, Counter64, mib-2 FROM SNMPv2-SMI -- [RFC2578] TimeStamp, TruthValue FROM SNMPv2-TC -- [RFC2579] MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF -- [RFC2580] InetAddressType, InetAddress, InetPortNumber FROM INET-ADDRESS-MIB; -- [RFC3291]
sctpMIB MODULE-IDENTITY
LAST-UPDATED "200409020000Z" -- 2nd September 2004 ORGANIZATION "IETF SIGTRAN Working Group" CONTACT-INFO " WG EMail: sigtran@ietf.org
-
-
Web Page:
-
http://www.ietf.org/html.charters/sigtran-charter.html Chair: Lyndon Ong Ciena Corporation 0480 Ridgeview Drive Cupertino, CA 95014 USA Tel: Email: lyong@ciena.com Editors: Maria-Carmen Belinchon R&D Department Ericsson Espana S. A. Via de los Poblados, 13 28033 Madrid Spain Tel: +34 91 339 3535 Email: Maria.C.Belinchon@ericsson.com Jose-Javier Pastor-Balbas R&D Department Ericsson Espana S. A. Via de los Poblados, 13 28033 Madrid Spain Tel: +34 91 339 1397 Email: J.Javier.Pastor@ericsson.com " DESCRIPTION "The MIB module for managing SCTP implementations.
-
-
Copyright © The Internet Society (2004). This version of this MIB module is part of RFC 3873; see the RFC itself for full legal notices. "
-
REVISION "200409020000Z" -- 2nd September 2004
-
DESCRIPTION " Initial version, published as RFC 3873"
::= { mib-2 104 }
-- the SCTP base variables group
sctpObjects OBJECT IDENTIFIER ::= { sctpMIB 1 } sctpStats OBJECT IDENTIFIER ::= { sctpObjects 1 } sctpParams OBJECT IDENTIFIER ::= { sctpObjects 2 } -- STATISTICS -- ********** -- STATE-RELATED STATISTICS
sctpCurrEstab OBJECT-TYPE
SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of associations for which the current state is either ESTABLISHED, SHUTDOWN-RECEIVED or SHUTDOWN-PENDING." REFERENCE "Section 4 in RFC2960 covers the SCTP Association state diagram." ::= { sctpStats 1 }
sctpActiveEstabs OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times that associations have made a direct transition to the ESTABLISHED state from the COOKIE-ECHOED state: COOKIE-ECHOED -> ESTABLISHED. The upper layer initiated the association attempt." REFERENCE "Section 4 in RFC2960 covers the SCTP Association state diagram." ::= { sctpStats 2 }
sctpPassiveEstabs OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times that associations have made a direct transition to the ESTABLISHED state from the CLOSED state: CLOSED -> ESTABLISHED. The remote endpoint initiated the association attempt." REFERENCE "Section 4 in RFC2960 covers the SCTP Association state diagram." ::= { sctpStats 3 }
sctpAborteds OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times that associations have made a direct transition to the CLOSED state from any state using the primitive 'ABORT': AnyState --Abort--> CLOSED. Ungraceful termination of the association." REFERENCE "Section 4 in RFC2960 covers the SCTP Association state diagram." ::= { sctpStats 4 }
sctpShutdowns OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times that associations have made a direct transition to the CLOSED state from either the SHUTDOWN-SENT state or the SHUTDOWN-ACK-SENT state. Graceful termination of the association." REFERENCE "Section 4 in RFC2960 covers the SCTP Association state diagram." ::= { sctpStats 5 }
-- OTHER LAYER STATISTICS
sctpOutOfBlues OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of out of the blue packets received by the host. An out of the blue packet is an SCTP packet correctly formed, including the proper checksum, but for which the receiver was unable to identify an appropriate association." REFERENCE "Section 8.4 in RFC2960 deals with the Out-Of-The-Blue (OOTB) packet definition and procedures." ::= { sctpStats 6 }
sctpChecksumErrors OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of SCTP packets received with an invalid checksum." REFERENCE "The checksum is located at the end of the SCTP packet as per Section 3.1 in RFC2960. RFC3309 updates SCTP to use a 32 bit CRC checksum." ::= { sctpStats 7 }
sctpOutCtrlChunks OBJECT-TYPE
SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of SCTP control chunks sent (retransmissions are not included). Control chunks are those chunks different from DATA." REFERENCE "Sections 1.3.5 and 1.4 in RFC2960 refer to control chunk as those chunks different from those that contain user information, i.e., DATA chunks." ::= { sctpStats 8 }
sctpOutOrderChunks OBJECT-TYPE
SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of SCTP ordered data chunks sent (retransmissions are not included)." REFERENCE "Section 3.3.1 in RFC2960 defines the ordered data chunk." ::= { sctpStats 9 }
sctpOutUnorderChunks OBJECT-TYPE
SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of SCTP unordered chunks (data chunks in which the U bit is set to 1) sent (retransmissions are not included)." REFERENCE "Section 3.3.1 in RFC2960 defines the unordered data chunk." ::= { sctpStats 10 }
sctpInCtrlChunks OBJECT-TYPE
SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of SCTP control chunks received (no duplicate chunks included)." REFERENCE "Sections 1.3.5 and 1.4 in RFC2960 refer to control chunk as those chunks different from those that contain user information, i.e., DATA chunks." ::= { sctpStats 11 }
sctpInOrderChunks OBJECT-TYPE
SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of SCTP ordered data chunks received (no duplicate chunks included)."
-
REFERENCE
-
"Section 3.3.1 in RFC2960 defines the ordered data chunk."
::= { sctpStats 12 }
sctpInUnorderChunks OBJECT-TYPE
SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of SCTP unordered chunks (data chunks in which the U bit is set to 1) received (no duplicate chunks included)." REFERENCE "Section 3.3.1 in RFC2960 defines the unordered data chunk." ::= { sctpStats 13 }
sctpFragUsrMsgs OBJECT-TYPE
SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION
-
-
"The number of user messages that have to be fragmented because of the MTU."
-
::= { sctpStats 14 }
sctpReasmUsrMsgs OBJECT-TYPE
SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of user messages reassembled, after conversion into DATA chunks." REFERENCE "Section 6.9 in RFC2960 includes a description of the reassembly process." ::= { sctpStats 15 }
sctpOutSCTPPacks OBJECT-TYPE
SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of SCTP packets sent. Retransmitted DATA chunks are included." ::= { sctpStats 16 }
sctpInSCTPPacks OBJECT-TYPE
SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of SCTP packets received. Duplicates are included." ::= { sctpStats 17 }
sctpDiscontinuityTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime on the most recent occasion at which any one or more of this general statistics counters suffered a discontinuity. The relevant counters are the specific instances associated with this interface of any Counter32 or Counter64 object contained in the SCTP layer statistics (defined below sctpStats branch). If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this object contains a zero value." REFERENCE "The inclusion of this object is recommended by RFC2578." ::= { sctpStats 18 } -- PROTOCOL GENERAL VARIABLES -- **************************
sctpRtoAlgorithm OBJECT-TYPE
SYNTAX INTEGER { other(1), -- Other new one. Future use vanj(2) -- Van Jacobson's algorithm } MAX-ACCESS read-only STATUS current DESCRIPTION "The algorithm used to determine the timeout value (T3-rtx) used for re-transmitting unacknowledged chunks." REFERENCE "Section 6.3.1 and 6.3.2 in RFC2960 cover the RTO calculation and retransmission timer rules." DEFVAL {vanj} -- vanj(2) ::= { sctpParams 1 }
sctpRtoMin OBJECT-TYPE
SYNTAX Unsigned32 UNITS "milliseconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The minimum value permitted by a SCTP implementation for the retransmission timeout value, measured in milliseconds. More refined semantics for objects of this type depend upon the algorithm used to determine the retransmission timeout value.
-
-
A retransmission time value of zero means immediate retransmission.
-
The value of this object has to be lower than or equal to stcpRtoMax's value." DEFVAL {1000} -- milliseconds ::= { sctpParams 2 }
sctpRtoMax OBJECT-TYPE
SYNTAX Unsigned32 UNITS "milliseconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The maximum value permitted by a SCTP implementation for the retransmission timeout value, measured in milliseconds. More refined semantics for objects of this type depend upon the algorithm used to determine the retransmission timeout value.
-
-
A retransmission time value of zero means immediate re- transmission.
-
The value of this object has to be greater than or equal to stcpRtoMin's value." DEFVAL {60000} -- milliseconds ::= { sctpParams 3 }
sctpRtoInitial OBJECT-TYPE
SYNTAX Unsigned32 UNITS "milliseconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The initial value for the retransmission timer. A retransmission time value of zero means immediate re- transmission." DEFVAL {3000} -- milliseconds ::= { sctpParams 4 }
sctpMaxAssocs OBJECT-TYPE
SYNTAX Integer32 (-1 | 0..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "The limit on the total number of associations the entity can support. In entities where the maximum number of associations is dynamic, this object should contain the value -1." ::= { sctpParams 5 }
sctpValCookieLife OBJECT-TYPE
SYNTAX Unsigned32 UNITS "milliseconds" MAX-ACCESS read-only STATUS current DESCRIPTION "Valid cookie life in the 4-way start-up handshake procedure." REFERENCE "Section 5.1.3 in RFC2960 explains the cookie generation process. Recommended value is per section 14 in RFC2960." DEFVAL {60000} -- milliseconds ::= { sctpParams 6 }
sctpMaxInitRetr OBJECT-TYPE
SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "The maximum number of retransmissions at the start-up phase (INIT and COOKIE ECHO chunks). " REFERENCE "Section 5.1.4, 5.1.6 in RFC2960 refers to Max.Init.Retransmit parameter. Recommended value is per section 14 in RFC2960." DEFVAL {8} -- number of attempts ::= { sctpParams 7 } -- TABLES -- ****** -- the SCTP Association TABLE
-- The SCTP association table contains information about each -- association in which the local endpoint is involved.
sctpAssocTable OBJECT-TYPE
SYNTAX SEQUENCE OF SctpAssocEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing SCTP association-specific information." ::= { sctpObjects 3 }
sctpAssocEntry OBJECT-TYPE
SYNTAX SctpAssocEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "General common variables and statistics for the whole association." INDEX { sctpAssocId } ::= { sctpAssocTable 1 }
SctpAssocEntry ::= SEQUENCE {
sctpAssocId Unsigned32, sctpAssocRemHostName OCTET STRING, sctpAssocLocalPort InetPortNumber, sctpAssocRemPort InetPortNumber, sctpAssocRemPrimAddrType InetAddressType, sctpAssocRemPrimAddr InetAddress, sctpAssocHeartBeatInterval Unsigned32, sctpAssocState INTEGER, sctpAssocInStreams Unsigned32, sctpAssocOutStreams Unsigned32, sctpAssocMaxRetr Unsigned32, sctpAssocPrimProcess Unsigned32, sctpAssocT1expireds Counter32, -- Statistic sctpAssocT2expireds Counter32, -- Statistic sctpAssocRtxChunks Counter32, -- Statistic sctpAssocStartTime TimeStamp, sctpAssocDiscontinuityTime TimeStamp }
sctpAssocId OBJECT-TYPE
SYNTAX Unsigned32 (1..4294967295) MAX-ACCESS not-accessible STATUS current DESCRIPTION "Association Identification. Value identifying the association. " ::= { sctpAssocEntry 1 }
sctpAssocRemHostName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..255)) MAX-ACCESS read-only STATUS current DESCRIPTION "The peer's DNS name. This object needs to have the same format as the encoding in the DNS protocol. This implies that the domain name can be up to 255 octets long, each octet being 0<=x<=255 as value with US-ASCII A-Z having a case insensitive matching.
-
-
If no DNS domain name was received from the peer at init time (embedded in the INIT or INIT-ACK chunk), this object is meaningless. In such cases the object MUST contain a zero- length string value. Otherwise, it contains the remote host name received at init time."
-
::= { sctpAssocEntry 2 }
sctpAssocLocalPort OBJECT-TYPE
SYNTAX InetPortNumber (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "The local SCTP port number used for this association." ::= { sctpAssocEntry 3 }
sctpAssocRemPort OBJECT-TYPE
SYNTAX InetPortNumber (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "The remote SCTP port number used for this association." ::= { sctpAssocEntry 4 }
sctpAssocRemPrimAddrType OBJECT-TYPE
SYNTAX InetAddressType MAX-ACCESS read-only STATUS current DESCRIPTION "The internet type of primary remote IP address. " ::= { sctpAssocEntry 5 }
sctpAssocRemPrimAddr OBJECT-TYPE
SYNTAX InetAddress MAX-ACCESS read-only STATUS current DESCRIPTION "The primary remote IP address. The type of this address is determined by the value of sctpAssocRemPrimAddrType.
-
-
The client side will know this value after INIT_ACK message reception, the server side will know this value when sending INIT_ACK message. However, values will be filled in at established(4) state."
-
::= { sctpAssocEntry 6 }
sctpAssocHeartBeatInterval OBJECT-TYPE
SYNTAX Unsigned32 UNITS "milliseconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The current heartbeat interval.. Zero value means no HeartBeat, even when the concerned sctpAssocRemAddrHBFlag object is true." DEFVAL {30000} -- milliseconds ::= { sctpAssocEntry 7 }
sctpAssocState OBJECT-TYPE
SYNTAX INTEGER { closed(1), cookieWait(2), cookieEchoed(3), established(4), shutdownPending(5), shutdownSent(6), shutdownReceived(7), shutdownAckSent(8), deleteTCB(9) } MAX-ACCESS read-write STATUS current DESCRIPTION "The state of this SCTP association.
-
-
As in TCP, deleteTCB(9) is the only value that may be set by a management station. If any other value is received, then the agent must return a wrongValue error.
If a management station sets this object to the value deleteTCB(9), then this has the effect of deleting the TCB (as defined in SCTP) of the corresponding association on the managed node, resulting in immediate termination of the association.
As an implementation-specific option, an ABORT chunk may be sent from the managed node to the other SCTP endpoint as a result of setting the deleteTCB(9) value. The ABORT chunk implies an ungraceful association shutdown."
-
REFERENCE
-
-
"Section 4 in RFC2960 covers the SCTP Association state diagram."
-
::= { sctpAssocEntry 8 }
sctpAssocInStreams OBJECT-TYPE
SYNTAX Unsigned32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "Inbound Streams according to the negotiation at association start up." REFERENCE "Section 1.3 in RFC2960 includes a definition of stream. Section 5.1.1 in RFC2960 covers the streams negotiation process." ::= { sctpAssocEntry 9 }
sctpAssocOutStreams OBJECT-TYPE
SYNTAX Unsigned32 (1..65535) MAX-ACCESS read-only STATUS current DESCRIPTION "Outbound Streams according to the negotiation at association start up. " REFERENCE "Section 1.3 in RFC2960 includes a definition of stream. Section 5.1.1 in RFC2960 covers the streams negotiation process." ::= { sctpAssocEntry 10 }
sctpAssocMaxRetr OBJECT-TYPE
SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "The maximum number of data retransmissions in the association context. This value is specific for each association and the upper layer can change it by calling the appropriate primitives. This value has to be smaller than the addition of all the maximum number for all the paths (sctpAssocRemAddrMaxPathRtx). A value of zero value means no retransmissions." DEFVAL {10} -- number of attempts ::= { sctpAssocEntry 11 }
sctpAssocPrimProcess OBJECT-TYPE
SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "This object identifies the system level process which holds primary responsibility for the SCTP association. Wherever possible, this should be the system's native unique identification number. The special value 0 can be used to indicate that no primary process is known.
-
-
Note that the value of this object can be used as a pointer into the swRunTable of the HOST-RESOURCES-MIB(if the value is smaller than 2147483647) or into the sysApplElmtRunTable of the SYSAPPL-MIB."
-
::= { sctpAssocEntry 12 } -- Association Statistics
sctpAssocT1expireds OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The T1 timer determines how long to wait for an acknowledgement after sending an INIT or COOKIE-ECHO chunk. This object reflects the number of times the T1 timer expires without having received the acknowledgement. Discontinuities in the value of this counter can occur at re- initialization of the management system, and at other times as indicated by the value of sctpAssocDiscontinuityTime." REFERENCE "Section 5 in RFC2960." ::= { sctpAssocEntry 13 }
sctpAssocT2expireds OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The T2 timer determines how long to wait for an acknowledgement after sending a SHUTDOWN or SHUTDOWN-ACK chunk. This object reflects the number of times that T2- timer expired. Discontinuities in the value of this counter can occur at re- initialization of the management system, and at other times as indicated by the value of sctpAssocDiscontinuityTime." REFERENCE "Section 9.2 in RFC2960." ::= { sctpAssocEntry 14 }
sctpAssocRtxChunks OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "When T3-rtx expires, the DATA chunks that triggered the T3 timer will be re-sent according with the retransmissions rules. Every DATA chunk that was included in the SCTP packet that triggered the T3-rtx timer must be added to the value of this counter. Discontinuities in the value of this counter can occur at re- initialization of the management system, and at other times as indicated by the value of sctpAssocDiscontinuityTime." REFERENCE "Section 6 in RFC2960 covers the retransmission process and rules." ::= { sctpAssocEntry 15 }
sctpAssocStartTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime at the time that the association represented by this row enters the ESTABLISHED state, i.e., the sctpAssocState object is set to established(4). The value of this object will be zero: - before the association enters the established(4) state, or
-
- if the established(4) state was entered prior to the last re-initialization of the local network management subsystem."
::= { sctpAssocEntry 16 }
sctpAssocDiscontinuityTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime on the most recent occasion at which any one or more of this SCTP association counters suffered a discontinuity. The relevant counters are the specific instances associated with this interface of any Counter32 or Counter64 object contained in the sctpAssocTable or sctpLocalAddrTable or sctpRemAddrTable. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this object contains a zero value. " REFERENCE "The inclusion of this object is recommended by RFC2578." ::= { sctpAssocEntry 17 } -- Expanded tables: Including Multi-home feature -- Local Address TABLE -- *******************
sctpAssocLocalAddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF SctpAssocLocalAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Expanded table of sctpAssocTable based on the AssocId index. This table shows data related to each local IP address which is used by this association." ::= { sctpObjects 4 }
sctpAssocLocalAddrEntry OBJECT-TYPE
SYNTAX SctpAssocLocalAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Local information about the available addresses. There will be an entry for every local IP address defined for this association. Implementors need to be aware that if the size of sctpAssocLocalAddr exceeds 114 octets then OIDs of column instances in this table will have more than 128 sub- identifiers and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3." INDEX { sctpAssocId, -- shared index sctpAssocLocalAddrType, sctpAssocLocalAddr } ::= { sctpAssocLocalAddrTable 1 }
SctpAssocLocalAddrEntry ::= SEQUENCE {
sctpAssocLocalAddrType InetAddressType, sctpAssocLocalAddr InetAddress, sctpAssocLocalAddrStartTime TimeStamp }
sctpAssocLocalAddrType OBJECT-TYPE
SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "Internet type of local IP address used for this association." ::= { sctpAssocLocalAddrEntry 1 }
sctpAssocLocalAddr OBJECT-TYPE
SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The value of a local IP address available for this association. The type of this address is determined by the value of sctpAssocLocalAddrType." ::= { sctpAssocLocalAddrEntry 2 }
sctpAssocLocalAddrStartTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime at the time that this row was created." ::= { sctpAssocLocalAddrEntry 3 } -- Remote Addresses TABLE -- **********************
sctpAssocRemAddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF SctpAssocRemAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Expanded table of sctpAssocTable based on the AssocId index. This table shows data related to each remote peer IP address which is used by this association." ::= { sctpObjects 5 }
sctpAssocRemAddrEntry OBJECT-TYPE
SYNTAX SctpAssocRemAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information about the most important variables for every remote IP address. There will be an entry for every remote IP address defined for this association. Implementors need to be aware that if the size of sctpAssocRemAddr exceeds 114 octets then OIDs of column instances in this table will have more than 128 sub- identifiers and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3." INDEX { sctpAssocId, -- shared index sctpAssocRemAddrType, sctpAssocRemAddr } ::= { sctpAssocRemAddrTable 1 }
SctpAssocRemAddrEntry ::= SEQUENCE {
sctpAssocRemAddrType InetAddressType, sctpAssocRemAddr InetAddress, sctpAssocRemAddrActive TruthValue, sctpAssocRemAddrHBActive TruthValue, sctpAssocRemAddrRTO Unsigned32, sctpAssocRemAddrMaxPathRtx Unsigned32, sctpAssocRemAddrRtx Counter32, -- Statistic sctpAssocRemAddrStartTime TimeStamp }
sctpAssocRemAddrType OBJECT-TYPE
SYNTAX InetAddressType MAX-ACCESS not-accessible STATUS current DESCRIPTION "Internet type of a remote IP address available for this association." ::= { sctpAssocRemAddrEntry 1 }
sctpAssocRemAddr OBJECT-TYPE
SYNTAX InetAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The value of a remote IP address available for this association. The type of this address is determined by the value of sctpAssocLocalAddrType." ::= { sctpAssocRemAddrEntry 2 }
sctpAssocRemAddrActive OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "This object gives information about the reachability of this specific remote IP address.
-
-
When the object is set to 'true' (1), the remote IP address is understood as Active. Active means that the threshold of no answers received from this IP address has not been reached.
When the object is set to 'false' (2), the remote IP address is understood as Inactive. Inactive means that either no heartbeat or any other message was received from this address, reaching the threshold defined by the protocol."
REFERENCE
-
"The remote transport states are defined as Active and Inactive in the SCTP, RFC2960."
-
::= { sctpAssocRemAddrEntry 3 }
sctpAssocRemAddrHBActive OBJECT-TYPE
SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "This object indicates whether the optional Heartbeat check associated to one destination transport address is activated or not (value equal to true or false, respectively). " ::= { sctpAssocRemAddrEntry 4 } sctpAssocRemAddrRTO OBJECT-TYPE -- T3-rtx- Timer SYNTAX Unsigned32 UNITS "milliseconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The current Retransmission Timeout. T3-rtx timer as defined in the protocol SCTP." REFERENCE "Section 6.3 in RFC2960 deals with the Retransmission Timer Management." ::= { sctpAssocRemAddrEntry 5 }
sctpAssocRemAddrMaxPathRtx OBJECT-TYPE
SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "Maximum number of DATA chunks retransmissions allowed to a remote IP address before it is considered inactive, as defined in RFC2960." REFERENCE "Section 8.2, 8.3 and 14 in RFC2960." DEFVAL {5} -- number of attempts ::= { sctpAssocRemAddrEntry 6 }
-- Remote Address Statistic
sctpAssocRemAddrRtx OBJECT-TYPE
SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of DATA chunks retransmissions to this specific IP address. When T3-rtx expires, the DATA chunk that triggered the T3 timer will be re-sent according to the retransmissions rules. Every DATA chunk that is included in a SCTP packet and was transmitted to this specific IP address before, will be included in this counter.
-
-
Discontinuities in the value of this counter can occur at re- initialization of the management system, and at other times as indicated by the value of sctpAssocDiscontinuityTime."
-
::= { sctpAssocRemAddrEntry 7 }
sctpAssocRemAddrStartTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime at the time that this row was created." ::= { sctpAssocRemAddrEntry 8 } -- ASSOCIATION INVERSE TABLE -- *************************
-- BY LOCAL PORT
sctpLookupLocalPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF SctpLookupLocalPortEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "With the use of this table, a list of associations which are
using the specified local port can be retrieved."
-
::= { sctpObjects 6 }
sctpLookupLocalPortEntry OBJECT-TYPE
SYNTAX SctpLookupLocalPortEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table is indexed by local port and association ID. Specifying a local port, we would get a list of the associations whose local port is the one specified." INDEX { sctpAssocLocalPort, sctpAssocId } ::= { sctpLookupLocalPortTable 1 }
SctpLookupLocalPortEntry::= SEQUENCE {
sctpLookupLocalPortStartTime TimeStamp }
sctpLookupLocalPortStartTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime at the time that this row was created.
-
-
As the table will be created after the sctpAssocTable creation, this value could be equal to the sctpAssocStartTime object from the main table."
-
::= { sctpLookupLocalPortEntry 1 }
-- BY REMOTE PORT
sctpLookupRemPortTable OBJECT-TYPE
SYNTAX SEQUENCE OF SctpLookupRemPortEntry MAX-ACCESS not-accessible STATUS current
-
DESCRIPTION
-
"With the use of this table, a list of associations which are using the specified remote port can be got"
::= { sctpObjects 7 }
sctpLookupRemPortEntry OBJECT-TYPE
SYNTAX SctpLookupRemPortEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table is indexed by remote port and association ID. Specifying a remote port we would get a list of the associations whose local port is the one specified " INDEX { sctpAssocRemPort, sctpAssocId } ::= { sctpLookupRemPortTable 1 }
SctpLookupRemPortEntry::= SEQUENCE {
sctpLookupRemPortStartTime TimeStamp }
sctpLookupRemPortStartTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime at the time that this row was created.
-
-
As the table will be created after the sctpAssocTable creation, this value could be equal to the sctpAssocStartTime object from the main table."
-
::= { sctpLookupRemPortEntry 1 } -- BY REMOTE HOST NAME
sctpLookupRemHostNameTable OBJECT-TYPE
SYNTAX SEQUENCE OF SctpLookupRemHostNameEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "With the use of this table, a list of associations with that particular host can be retrieved." ::= { sctpObjects 8 }
sctpLookupRemHostNameEntry OBJECT-TYPE
SYNTAX SctpLookupRemHostNameEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table is indexed by remote host name and association ID. Specifying a host name we would get a list of the associations specifying that host name as the remote one.
-
-
Implementors need to be aware that if the size of sctpAssocRemHostName exceeds 115 octets then OIDs of column instances in this table will have more than 128 sub- identifiers and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3."
-
INDEX { sctpAssocRemHostName, sctpAssocId } ::= { sctpLookupRemHostNameTable 1 }
SctpLookupRemHostNameEntry::= SEQUENCE {
sctpLookupRemHostNameStartTime TimeStamp }
sctpLookupRemHostNameStartTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime at the time that this row was created.
-
-
As the table will be created after the sctpAssocTable creation, this value could be equal to the sctpAssocStartTime object from the main table."
-
::= { sctpLookupRemHostNameEntry 1 }
-- BY REMOTE PRIMARY IP ADDRESS
sctpLookupRemPrimIPAddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF SctpLookupRemPrimIPAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "With the use of this table, a list of associations that have the specified IP address as primary within the remote set of active addresses can be retrieved." ::= { sctpObjects 9 }
sctpLookupRemPrimIPAddrEntry OBJECT-TYPE
SYNTAX SctpLookupRemPrimIPAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table is indexed by primary address and association ID. Specifying a primary address, we would get a list of the associations that have the specified remote IP address marked as primary. Implementors need to be aware that if the size of sctpAssocRemPrimAddr exceeds 114 octets then OIDs of column instances in this table will have more than 128 sub- identifiers and cannot be accessed using SNMPv1, SNMPv2c, or SNMPv3." INDEX { sctpAssocRemPrimAddrType, sctpAssocRemPrimAddr, sctpAssocId } ::= { sctpLookupRemPrimIPAddrTable 1 }
SctpLookupRemPrimIPAddrEntry::= SEQUENCE {
sctpLookupRemPrimIPAddrStartTime TimeStamp }
sctpLookupRemPrimIPAddrStartTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current
-
DESCRIPTION
-
"The value of SysUpTime at the time that this row was created.
As the table will be created after the sctpAssocTable creation, this value could be equal to the sctpAssocStartTime object from the main table."
::= { sctpLookupRemPrimIPAddrEntry 1 } -- BY REMOTE IP ADDRESS
sctpLookupRemIPAddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF SctpLookupRemIPAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "With the use of this table, a list of associations that have the specified IP address as one of the remote ones can be retrieved. " ::= { sctpObjects 10 }
sctpLookupRemIPAddrEntry OBJECT-TYPE
SYNTAX SctpLookupRemIPAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table is indexed by a remote IP address and association ID. Specifying an IP address we would get a list of the associations that have the specified IP address included within the set of remote IP addresses." INDEX { sctpAssocRemAddrType, sctpAssocRemAddr, sctpAssocId } ::= { sctpLookupRemIPAddrTable 1 } SctpLookupRemIPAddrEntry::= SEQUENCE { sctpLookupRemIPAddrStartTime TimeStamp }
sctpLookupRemIPAddrStartTime OBJECT-TYPE
SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of SysUpTime at the time that this row was created.
-
-
As the table will be created after the sctpAssocTable creation, this value could be equal to the sctpAssocStartTime object from the main table."
-
::= { sctpLookupRemIPAddrEntry 1 }
-- 4.1 Conformance Information
sctpMibConformance OBJECT IDENTIFIER ::= { sctpMIB 2 } sctpMibCompliances OBJECT IDENTIFIER ::= { sctpMibConformance 1 } sctpMibGroups OBJECT IDENTIFIER ::= { sctpMibConformance 2 } -- 4.1.1 Units of conformance -- -- MODULE GROUPS --
sctpLayerParamsGroup OBJECT-GROUP
OBJECTS { sctpRtoAlgorithm, sctpRtoMin, sctpRtoMax, sctpRtoInitial, sctpMaxAssocs, sctpValCookieLife, sctpMaxInitRetr } STATUS current DESCRIPTION "Common parameters for the SCTP layer, i.e., for all the associations. They can usually be referred to as configuration parameters." ::= { sctpMibGroups 1 }
sctpStatsGroup OBJECT-GROUP
OBJECTS { sctpCurrEstab, sctpActiveEstabs, sctpPassiveEstabs, sctpAborteds, sctpShutdowns, sctpOutOfBlues, sctpChecksumErrors, sctpOutCtrlChunks, sctpOutOrderChunks, sctpOutUnorderChunks, sctpInCtrlChunks, sctpInOrderChunks, sctpInUnorderChunks, sctpFragUsrMsgs, sctpReasmUsrMsgs, sctpOutSCTPPacks, sctpInSCTPPacks, sctpDiscontinuityTime, sctpAssocT1expireds, sctpAssocT2expireds, sctpAssocRtxChunks, sctpAssocRemAddrRtx } STATUS current DESCRIPTION "Statistics group. It includes the objects to collect state changes in the SCTP protocol local layer and flow control statistics." ::= { sctpMibGroups 2 }
sctpPerAssocParamsGroup OBJECT-GROUP
OBJECTS { sctpAssocRemHostName, sctpAssocLocalPort, sctpAssocRemPort, sctpAssocRemPrimAddrType, sctpAssocRemPrimAddr, sctpAssocHeartBeatInterval, sctpAssocState, sctpAssocInStreams, sctpAssocOutStreams, sctpAssocMaxRetr, sctpAssocPrimProcess, sctpAssocStartTime, sctpAssocDiscontinuityTime, sctpAssocLocalAddrStartTime, sctpAssocRemAddrActive, sctpAssocRemAddrHBActive, sctpAssocRemAddrRTO, sctpAssocRemAddrMaxPathRtx, sctpAssocRemAddrStartTime } STATUS current DESCRIPTION "The SCTP group of objects to manage per-association parameters. These variables include all the SCTP basic features." ::= { sctpMibGroups 3 }
sctpPerAssocStatsGroup OBJECT-GROUP
OBJECTS { sctpAssocT1expireds, sctpAssocT2expireds, sctpAssocRtxChunks, sctpAssocRemAddrRtx } STATUS current DESCRIPTION "Per Association Statistics group. It includes the objects to collect flow control statistics per association." ::= { sctpMibGroups 4 }
sctpInverseGroup OBJECT-GROUP
OBJECTS { sctpLookupLocalPortStartTime, sctpLookupRemPortStartTime, sctpLookupRemHostNameStartTime, sctpLookupRemPrimIPAddrStartTime, sctpLookupRemIPAddrStartTime } STATUS current DESCRIPTION "Objects used in the inverse lookup tables." ::= { sctpMibGroups 5 }
-- 4.1.2 Compliance Statements
-- -- MODULE COMPLIANCES --
sctpMibCompliance MODULE-COMPLIANCE
STATUS current DESCRIPTION "The compliance statement for SNMP entities which implement this SCTP MIB Module.
-
-
There are a number of INDEX objects that cannot be represented in the form of OBJECT clauses in SMIv2, but for which we have the following compliance requirements, expressed in OBJECT clause form in this description clause:
-
-- OBJECT sctpAssocLocalAddrType -- SYNTAX InetAddressType {ipv4(1), ipv6(2)} -- DESCRIPTION -- It is only required to have IPv4 and IPv6 addresses without -- zone indices. -- The address with zone indices is required if an -- implementation can connect multiple zones. -- -- OBJECT sctpAssocLocalAddr -- SYNTAX InetAddress (SIZE(4|16)) -- DESCRIPTION -- An implementation is only required to support globally -- unique IPv4 and IPv6 addresses. -- -- OBJECT sctpAssocRemAddrType -- SYNTAX InetAddressType {ipv4(1), ipv6(2)} -- DESCRIPTION -- It is only required to have IPv4 and IPv6 addresses without -- zone indices. -- The address with zone indices is required if an -- implementation can connect multiple zones. -- -- OBJECT sctpAssocRemAddr -- SYNTAX InetAddress (SIZE(4|16)) -- DESCRIPTION -- An implementation is only required to support globally -- unique IPv4 and IPv6 addresses. -- " -- closes DESCRIPTION clause of MODULE-COMPLIANCE MODULE -- this module MANDATORY-GROUPS { sctpLayerParamsGroup, sctpPerAssocParamsGroup, sctpStatsGroup, sctpPerAssocStatsGroup } OBJECT sctpAssocRemPrimAddrType SYNTAX InetAddressType { ipv4(1), ipv6(2) } DESCRIPTION "It is only required to have IPv4 and IPv6 addresses without zone indices.
-
-
-
The address with zone indices is required if an implementation can connect multiple zones."
-
-
OBJECT sctpAssocRemPrimAddr SYNTAX InetAddress (SIZE(4|16)) DESCRIPTION "An implementation is only required to support globally unique IPv4 and globally unique IPv6 addresses." OBJECT sctpAssocState WRITE-SYNTAX INTEGER { deleteTCB(9) } MIN-ACCESS read-only DESCRIPTION "Only the deleteTCB(9) value MAY be set by a management station at most. A read-only option is also considered to be compliant with this MIB module description."
-
-
GROUP sctpInverseGroup
DESCRIPTION-
"Objects used in inverse lookup tables. This should be implemented, at the discretion of the implementers, for easier lookups in the association tables"
-
-
::= { sctpMibCompliances 1 } END
5. Compiling Notes
-
When compiling the MIB module warnings similar to the following may occur:
- warning: index of row `sctpAssocLocalAddrEntry' can exceed OID size limit by 141 subidentifier(s) - warning: index of row `sctpAssocRemAddrEntry' can exceed OID size limit by 141 subidentifier(s) - warning: index of row `sctpLookupRemHostNameEntry' can exceed OID size limit by 140 subidentifier(s) - warning: index of row `sctpLookupRemPrimIPAddrEntry' can exceed OID size limit by 141 subidentifier(s) - warning: index of row `sctpLookupRemIPAddrEntry' can exceed OID size limit by 141 subidentifier(s)
These warnings are due to the fact that the row objects have index objects of type InetAddress or OCTET STRING whose size limit is 255 octets, and if that size limit were reached the names of column instances in those rows would exceed the 128 sub-identifier limit imposed by current versions of the SNMP. Actual limitations for the index object sizes are noted in the conceptual row DESCRIPTION clauses. For the InetAddress index objects these size limits will not be reached with any of the address types in current use.
6. References
6.1. Normative References
-
[RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999. [RFC2579] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999. [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999. [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V. Paxson, "Stream Control Transmission Protocol", RFC 2960, October 2000. [RFC3291] Daniele, M., Haberman, B., Routhier, S., and J. Schoenwaelder, "Textual Conventions for Internet Network Addresses", RFC 3291, May 2002. [RFC3309] Stone, J., Stewart, R., and D. Otis, "Stream Control Transmission Protocol (SCTP) Checksum Change", RFC 3309, September 2002.
6.2. Informative References
-
[RFC1213] McCloghrie, K. and M. Rose, "Management Information Base for Network Management of TCP/IP-based internets:MIB- II", STD 17, RFC 1213, March 1991. [RFC2012] McCloghrie, K., "SNMPv2 Management Information Base for the Transmission Control Protocol using SMIv2", RFC 2012, November 1996. [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet-Standard Management Framework", RFC 3410, December 2002. [VANJ] Jacobson, V., "Congestion Avoidance and Control", SIGCOMM 1988, Stanford, California. [IPv6ARCH] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., Onoe, A., and B. Zill, "IPv6 Scoped Address Architecture", Work in Progress, December 2002. [sctpImplem] Stewart, R., Ong, L., Arias-Rodriguez, I., Caro, A., and M. Tuexen, "Stream Control Transmission Protocol (SCTP) Implementers Guide", Work in Progress, January 2002. [TCPMIB] Fenner, B., McCloghrie, K., Raghunarayan, R., and J. Schoenwalder, "Management Information Base for the Transmission Control Protocol (TCP)", Work in Progress, November 2002. [UDPMIB] Fenner, B., "Management Information Base for User Datagram Protocol (UDP)", Work in Progress, June 2002. [MIBGUIDE] Heard, C.M., "Guidelines for MIB Authors and Reviewers", Work in Progress, February 2003.
7. Security Considerations
-
There are management objects defined in this MIB that have a MAX- ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. These are the tables and objects and their sensitivity/vulnerability:
- The sctpAssocState object has a MAX-ACCESS clause of read-write, which allows termination of an arbitrary connection. Unauthorized access could cause a denial of service.
Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. Thus, it is important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:
- The sctpAssocTable, sctpAssocLocalAddressTable, sctpAssocRemAddressTable and the lookup tables contain objects providing information on the active associations on the device, local and peer's IP addresses, the status of these associations and the associated processes. This information may be used by an attacker to launch attacks against known/unknown weakness in certain protocols/applications.
- The sctpAssocTable contains objects providing information on local and remote ports objects, that can be used to identify what ports are open on the machine and can thus suggest what attacks are likely to succeed, without the attacker having to run a port scanner.
SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.
It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).
Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.
The above objects also have privacy implications, i.e., they disclose who is connecting to what hosts. These are sensitive from a perspective of preventing traffic analysis, and also to protect individual privacy.
8. Acknowledgments
-
The authors wish to thank Juergen Schoenwaelder, David Partain, Shawn A. Routhier, Ed Yarwood, John Linton, Shyamal Prasad, Juan-Francisco Martin, Dave Thaler, and Bert Wijnen for their invaluable comments.
9. Authors' Addresses
-
Javier Pastor-Balbas
Ericsson Espana S.A.
Network Signaling System Management
Via de los Poblados 13
Madrid, 28033
SpainPhone: +34-91-339-1397 EMail: J.Javier.Pastor@ericsson.com
Maria-Carmen Belinchon
Ericsson Espana S.A.
Network Signaling System Management
Via de los Poblados 13
Madrid, 28033
SpainPhone: +34-91-339-3535 EMail: maria.carmen.belinchon@ericsson.com
10. Full Copyright Statement
-
Copyright © The Internet Society (2004).
This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.
This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/S HE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
-
The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the IETF's procedures with respect to rights in IETF Documents can be found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf- ipr@ietf.org.
Acknowledgement
-
Funding for the RFC Editor function is currently provided by the Internet Society.